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Abstract 

Using two disease-linked connexin mutant mice that possess significantly reduced 

connexin function (Cx43I130T/+ and Cx26K14-S17F/+) this investigation is the first to address 

the roles of Cx26 and Cx43 in modulating epidermal health in response to UV radiation. 

Viable Cx26K14-S17F/+ mice were successfully created in-house to express the mutant Cx26 

S17F protein in keratinocytes and possess scaly skin, rapidly develop epidermal 

desquamation, and die soon after UV exposure. Conversely, Cx43I130T/+ mice did not 

possess any skin abnormalities before or after UV exposure. We also identified that 

primary murine melanocytes are not homocellularly coupled and do not express Cx43. 

Furthermore, we show that Cx43 may act as a tumor facilitator to promote tumor cell 

survival in human melanoma metastases in a variety of distant organ sites. Taken together, 

these studies strongly suggest that Cx26 is critical in protecting keratinocytes from acute 

UV damage, while Cx43 may provide melanomas with a survival advantage in distant 

metastases.  
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Chapter 1  

1 Literature Review  

1.1.1 Connexins 

Connexins encompass a family of integral membrane proteins that have been extensively 

studied at all levels of cellular, molecular, and disease biology. Members of the connexin 

family share similar overall structural topology: the polypeptide backbone spanning the 

plasma membrane four times resulting in two extracellular loops, one intracellular 

cytoplasmic loop, and intracellular amino- and carboxy-terminals (Goodenough and Paul, 

1996). Many of the functional differences among members of the connexin family can be 

sourced to the variable length and sequence of the intracellular cytoplasmic loop and 

carboxy-terminus of the connexin protein (Elfgang et al., 1995). For example, the carboxy-

terminus of some connexins contain phosphorylation sites that regulate channel 

permeability, in addition to connexin life cycle and intercellular trafficking (Lampe and 

Lau, 2010). As such, connexins are categorized by differences in sequence and structural 

homology, and are commonly distinguished in nomenclature by their respective molecular 

weights in kDa (i.e. Cx43 is approximately 43 kDa) (Scott and Kelsell, 2011).  

Most importantly, connexins gain functional significance by oligomerizing into hexamer 

units, commonly known as connexons or hemichannels. The majority of connexons are 

composed of identical connexin subunits, however specific members within the connexin 

family can interact to form heteromeric connexon channels (Wagner, 2008). These 

connexons are trafficked to the plasma membrane where they can either act as a 

hemichannel, allowing for communication between a cell and the surrounding 

microenvironment, or they can form a communication channel by docking to another 

connexon from a neighbouring cell. These communication channels are termed gap 

junctions (GJs), which often form GJ aggregates on the plasma membranes of both cells 

termed GJ plaques (Laird, 2006). At this level, the docking of two identical or two non-

identical connexon channels further increases the variety of GJ channels that can form 

(Wagner, 2008). In addition, each connexin member is specific in its compatibility to 

interact with other connexins, in both connexons and GJ channels. For example, under 
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standard conditions, Cx26 and Cx43 will not typically intermix when co-expressed in a 

cell (Gemel et al., 2004), whereas Cx26 and Cx30 are compatible (Di et al., 2005).  

GJs are present in almost all tissues in the body, however, not all connexins are 

ubiquitously distributed. Specific tissues will express certain connexin proteins that 

presumably possess selective channel properties that are favorable to maintain the normal 

function and health of cells that reside within that tissue. For example, both Cx43 and Cx26 

are expressed in the skin (Churko and Laird, 2013), however Cx43 is expressed in the heart 

and Cx26 is not (Severs et al., 2008). This is an indication of the putative roles connexins 

play in different physiological processes, including cellular proliferation, differentiation, 

and apoptosis (Dbouk et al., 2009; Alexander and Goldberg, 2003). As such, it is not 

surprising that the vast majority of members within the connexin family are homologous 

and highly conserved (Söhl and Willecke, 2003; Söhl and Willecke, 2004). Minus a few 

exceptions, almost all connexins share a similar gene structure, which is made up of two 

exons separated by an intron that can vary in length (Willecke et al., 2002). However, 

extensive regulatory processes (Söhl and Willecke, 2004), including tissue-specific 

promoters, allow connexin isoforms to be expressed differentially in an overlapping array 

with both spatial and temporal specificity (Dbouk et al., 2009).  

1.1.2 Gap Junction Dependent Roles for Connexins 

The most prominent role of GJ channels is to facilitate the passage of ions (i.e. Ca2+, Mg2+) 

and small molecules less than 1 kDa (i.e. ATP, cAMP) between neighbouring cells, which 

is termed gap junctional intercellular communication (GJIC) (Dbouk et al., 2009). The 

importance of GJIC in the normal development and physiology of vertebrates has been 

demonstrated through different connexin-deficient mice (Schütz et al., 2011; Kalcheva et 

al., 2007; Yamakage et al., 2000), in addition to the discovery of a variety of human 

diseases that have been linked to connexin mutations (Laird, 2008; Kelsell et al., 1997; 

Bergoffen et al., 1993). For example, Cx43 and Cx26 null mice are not viable due to severe 

deficits in ventricular flow (Reaume et al., 1995) and placental development (Gabriel et al., 

1998), respectively, illustrating the prominent role of Cx43-based GJIC in the heart, and 

Cx26-based GJIC in the developing placenta. 
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 Macroscopic gap junctional conductance has been determined by a variety of techniques 

including voltage clamp assessment of two coupled cells and the intercellular diffusion of 

fluorescent dyes (Herve & Derangeon, 2013). However, it is important to note that while 

GJ channels can typically pass many of the same constituents, they are not passive conduits 

for molecular intercellular transfer, but have distinct gating mechanisms that include their 

selective permeability to specific ions and molecules (Harris, 2007). For example, the 

secondary messenger inositol -1,4,5-triphosphate (IP3) can pass through various GJ 

channels, however it tends to preferentially pass through Cx32-based GJ channels as 

opposed to Cx43- or Cx26- based GJ channels (Goldberg et al., 2004). Furthermore, the 

wide array of biological consequences linked to improper GJ mediated intercellular 

signaling have been partially sourced to the distinct permeability properties of each GJ 

channel (Harris, 2007). Unfortunately, while the functional conduit of ions through GJ 

channels was demonstrated many years ago (Lawrence et al., 1978), their specific 

permeability properties have been difficult to determine (Harris, 2007). This is primarily 

due to the vast variability between GJ channels, which is a result of the unique pore 

properties of each connexin isoform, the ability of these isoforms to interact with non-

identical connexin/connexon units forming a wide variety of GJ channels, and further 

because the permeability of those GJ channels can be dynamically modulated (Harris, 

2007). However, recent work has determined that while pore size is important, GJ channels 

possess a high degree of molecular charge selectivity, with the ability to discern between 

monovalent ions (Herve & Derangeon, 2013).  

1.1.3 Gap Junction Independent Roles for Connexins 

In addition to the central dogma that connexins act as the building blocks of GJs to facilitate 

the intercellular transfer of molecules, recent evidence has shown that they possess GJ 

independent roles (Goodenough and Paul, 2003; Wang et al., 2013). One important 

function that has been identified is the ability of connexons to function as hemichannels, 

the unpaired halves of GJ channels, at the cell surface to exchange ions and molecules 

between the cell and the extracellular environment (DeVries and Schwartz, 1992; Wang et 

al., 2013). Evidence for these extra-junctional connexin channels has come from a variety 

of surface labeling, sucrose gradient fractionation, and cross linking studies (as reviewed 
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in Goodenough & Paul, 2003). For example, antibodies are commonly too large to fit 

between the extracellular space within the two connexons that comprise a GJ channel 

(Goodenough and Revel, 1971), yet antibodies conferred against the extracellular epitopes 

of a connexon channel can block GJ formation (Meyer et al., 1992). This indicates that 

connexons are present at the cell surface even before they assemble into GJ channels 

(Goodenough and Paul, 2003).  What has been raised into question is whether or not these 

hemichannels are active, originally it was presumed that they only could exist in a closed 

state, however channel opening appears to be dynamically regulated. For example, similar 

to other ion channels, hemichannels seem to be activated by common stimuli such as 

depolarization and changes in extracellular calcium (DeVries and Schwartz, 1992). 

Strikingly, these channels also seem to be activated by similar stimulants to that of their 

gap junctional counterparts, including changes in voltage, pH, cAMP etc. (DeVries and 

Schwartz, 1989). In addition, similar to gap junctions, hemichannels also allow for the 

passage of similar small molecules, including ATP, IP3, cAMP, glutathione etc. (Wang et 

al., 2013; Harris, 2007). Furthermore, hemichannels have been shown to form and be 

activated in a variety of different cell types, including oocytes (Paul et al., 1991), 

ventricular myocytes (Kondo et al., 2000), and astrocytes (Hofer and Dermietzel, 1998), 

and have been linked to important physiological processes (Goodenough and Paul, 2003). 

For example, the presence of connexons has been identified as an important tool for 

osteocyte survival, and osteogenesis (Orcel and Beaudreuil, 2002; Plotkin et al., 2002; 

Goodenough & Paul, 2003). However, uncontrolled hemichannel activity can have 

detrimental cellular effects. For example, the overexpression of Cx46 in oocytes caused 

cell lysis through hemichannels (Paul et al., 1991; Ebihara and Steiner, 1993).  

Connexins have also been shown to have functions independent of molecular passage that 

is seen in both GJs and hemichannels. Connexins can also affect different physiological 

processes by binding to direct partners within a protein interactome, activating or 

inactivating different downstream signaling cascades (Vinken et al., 2012; Laird, 2010). 

Each connexin member has its own distinct protein interactome, most likely due to 

differences in carboxy terminal length (Giepmans, 2004). For example, over 30 binding 

partners have been identified for Cx43, whereas only 5 have been identified for Cx26 which 

has a short carboxy terminal (Laird, 2010). This has raised the notion that the carboxy 
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terminal tail of connexin proteins is particularly important in specific protein interactions 

that can actually modulate the genetic programming of a cell (Giepmans, 2004). For 

example, in transformed cells, full length Cx43 and Cx32 induced GJIC but did not affect 

cell proliferation. However, transformed cells with Cx43 and Cx32 mutants lacking the 

carboxy terminal tail were able to inhibit proliferation (Omori and Yamasaki, 1999).   

Connexins also be interact with different post-transcriptional modifiers, including kinases, 

different scaffolding and cytoskeletal proteins (i.e. microtubules, tight junctions, adherens 

junctions), and other transcription factors and growth regulators (i.e. Wnt pathway 

modulators, NOV, CCN3, c-SRC, v-SRC etc.) (Giepmans, 2004; Laird, 2010). More 

importantly the interactions with these different binding partners, most notably with Cx43, 

have also been shown to have a variety of physiological effects. In addition, the role of 

Cx43 as a tumor suppressor in keratinocytes has been proposed to possibly be linked to its 

interaction with another known tumor suppressor, caveolin 1 (Langlois et al., 2010). In 

addition, Cx43 has also been shown to interact with other proteins, such as tumor 

susceptibility gene (TSG101; (Leithe et al., 2009) and NOV (Fu et al., 2004), that all have 

relationships to cell cycle control and furthermore to tumorigenesis (Naus and Laird, 2010). 

Furthermore, the interaction of connexons with different adhesion molecules, has also been 

shown to affect processes such as cellular migration and adhesion. For example, the 

interaction of Cx43 and N-cadherin has been shown to affect cell motility (Wei et al., 

2005), and the interaction of Cx43 and zona occludens (ZO) has been shown to modulate 

the cellular cytoskeleton (Olk et al., 2010; Laird, 2010). As such, as we continue to resolve 

the importance of connexins as modulators of cellular homeostasis and tissue health, it is 

important that we keep their non-junctional functions in mind.  

1.1.4 Connexins in the Epidermis 

While the general function of GJ channels is conserved, their expression profile is tissue-

specific, which is representative of their myriad of functions in both health and disease. In 

both humans and mice, numerous connexin members are expressed (21 and 20, 

respectively) in an overlapping array to maintain normal cellular function and tissue 

homeostasis (Söhl and Willecke, 2003; Alexander & Goldberg, 2003). In fact, many tissues 

express more than one connexin family member. For example, cardiomyocytes of the heart 
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express Cx40, Cx43, and Cx45, while hepatocytes of the liver express Cx26 and Cx32. 

Among these tissues, the epidermis of the skin is of great interest for its ability to express 

up to 10 connexins at the transcript level, and 7 at the protein level (as reviewed by Laird, 

2006). 

The epidermis of the skin is made of two primary cell types, keratinocytes and 

melanocytes. Melanocytes, which make up 5-10% of total cells in the epidermis, reside 

within the basal layer of epidermal keratinocytes (Figure 1.1). They distribute melanin 

pigment to surrounding keratinocytes in the epidermis, which helps prevent damage from 

environmental carcinogens, such as ultraviolet (UV) radiation (Li and Herlyn, 2000; Zaidi 

et al., 2008; Klein-szanto et al., 1994). The keratinocytes, which make up 90% of cells in 

the epidermis, are organized into four different layers: the basal layer, spinous layer, 

granular layer, and the uppermost stratified corneum. As the keratinocytes divide and 

differentiate they migrate from the basal layer to the stratified corneum, which is composed 

of terminally differentiated keratinocytes (Richard, 2000). The differentiation of 

keratinocytes into the insoluble stratified corneum is dependent on GJIC in addition to the 

expression of involucrin and loricrin and the incorporation of lipids (Scott et al., 2012). The 

functional capacity of the corneum is to protect the body from external pathogens by 

conferring an epidermal barrier (Hardman et al., 1998). The permeability barrier is 

maintained, in part, by the complement of connexins expressed throughout the different 

layers of the epidermis (Hardman et al., 1998; Schütz et al., 2011; Djalilian et al., 2006). 

As such, it is not surprising that multiple reports describe a prominent role for connexins 

in maintaining skin physiology (Churko & Laird, 2013; Martínez et al., 2009).  

Within the strata of keratinocytes, Cx43 is the most prominent connexin expressed in the 

epidermis and it acts in establishing a baseline of GJIC. However, Cx43 alone is not 

sufficient to maintain the normal epidermal function. As such, approximately 9 other Cx 

species are expressed, including Cx26 (Laird, 2006; Richard, 2000; Kretz et al., 2004). 

Current studies suggest that both of these connexins play functional roles in the regulation 

of epidermal homeostasis (Haass et al., 2006; Haass et al., 2010). Moreover, mutations in 

genes encoding Cx43 (GJA1) or Cx26 (GJB2) are associated with a variety of skin diseases, 
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including palmoplantar keratoderma (Scott et al., 2012; Churko et al., 2010) and keratitis-

ichthyosis-deafness syndrome (Scott et al., 2012; Schütz et al., 2011).  

It is also important to note that the expression of connexins throughout the epidermis can 

vary between humans and rodents. For example, in humans Cx43 is predominately 

expressed in the suprabasal layers of the interfollicular epidermis (Figure 1.1) (Di et al., 

2001), as opposed to the basal layers of rodent epidermis (Butterweck et al., 1994; Churko 

and Laird, 2013). In addition, in humans Cx26 exists at low levels in the granular layer of 

the epidermis (Figure 1.1) (Di et al., 2001) and in the more suprabasal layers of rodent 

epidermis (Butterweck et al., 1994; Churko and Laird, 2013). However, for the purpose of 

this investigation these slight differences in expression are not expected to affect the 

analyses of Cx43 and Cx26 in modulating epidermal health in response to UV radiation or 

skin cancer onset and progression.  

In contrast to keratinocytes, the connexin status of epidermal melanocytes is still widely 

unknown. While limited, one immunolabeling study has provided evidence for the 

expression of Cx43 in epidermal primary human melanocytes, and melanocytic cell lines  

(Hsu et al., 2000). Furthermore, some evidence does suggest that primary human 

melanocytes and keratinocytes in co-culture exhibit intercellular communication that is 

presumably through connexin-mediated GJs (Hsu et al., 2000, Haass and Herlyn, 2005). 

However, further investigation is required to confirm the identity of Cx43 in melanocytes 

and ultimately the importance of GJIC. In addition, while Cx26 has been shown to be 

expressed in melanocytes of the vestibular dark area of the inner ear, there has been no 

published reports of Cx26 being expressed in mouse or human epidermal melanocytes 

(Masuda et al., 2001).  

While keratinocytes and melanocytes make up the majority of epidermal cells, other cell 

types have been identified. Most prominently, Merkel and Langerhans cells have been 

identified, and reside within the stratum basal and the suprabasal layers, respectively 

(Maricich et al., 2009; Wolff and Stingl, 1983). Merkel cells make synaptic connections 

with somatosensory neurons to transmit sensory information (Maricich et al., 2009) while 

Langerhan cells act as the immune cells of the epidermis (Wolf and Stingl, 1983). Similar  



www.manaraa.com

 8 

  

Figure 1.1: Cx43 and Cx26 are differentially expressed within the stratified human epidermis. 
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to melanocytes, the connexin profile of these cells has been extremely limited. While 

Langerhan cells have been shown to be uncoupled with their keratinocyte neighbours 

(Goliger and Paul, 1994; Zimmerli et al., 2007), Merkel cells have been shown to express 

Cx43 (Woo et al., 2010).  

1.1.5 Connexins in Epidermal Pathology  

The overlapping array of connexins expressed within the epidermal strata play a variety of 

roles in regulating cellular behaviour to maintain overall tissue health and function (Laird, 

2006). The differential expression of connexins throughout the epidermis indicates the 

critical role of GJIC in epidermal physiology, and in more recent investigations, their 

effects on epidermal biology through non junctional binding proteins (Goodenough and 

Paul, 2003; Scott et al., 2012). Moreover, aberrant connexin protein expression has shown 

to result in abnormal keratinocyte proliferation, migration, and differentiation (Dbouk et 

al., 2009; Scott et al., 2012).  As such, it is not surprising that a range of skin pathologies 

can be attributed to mutations in connexin-encoding genes resulting in impairments in 

epidermal barrier, wound healing, and/or syndromic skin disease. Among these Cx43, 

Cx26, and Cx30 have been the primary focus due to their identified role in human skin 

pathology, but other connexins including Cx31 and Cx31.1 have also been examined (Scott 

et al., 2012).  

Studies in both humans and mice report that a transient decrease in Cx43 expression is 

necessary for epidermal healing after wounding (Kretz et al., 2003; Brandner et al., 2004), 

and has been identified as a regulator of keratinocyte proliferation (Pollok et al., 2011; 

Churko et al., 2012). In chronic non-healing wounds from humans and diabetic mice, Cx43 

is found to be expressed abnormally at the wound margins (Wang et al., 2007; Brandner et 

al., 2004). Furthermore, the application of mimetic peptides that reduce Cx43 GJIC or 

hemichannel function have been shown to decrease wound healing time, collectively 

demonstrating the need for regulated Cx43 expression to maintain normal keratinocyte 

behaviour (Pollok et al., 2011; Scott et al., 2012). In addition, truncating the c-terminal tail 

of Cx43 results in aberrant murine skin barrier formation and keratinocyte differentiation 

(Maass et al., 2005). Mutations in the gene encoding Cx43 (GJA1) have also been linked 

to the development of oculodentodigital dysplasia (ODDD), where a subset of patients have 
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been shown to present with palmoplantar keratoderma and hyperkeratosis (Scott et al., 

2012; Avshalumova et al., 2014). This indicates that the transient decrease in Cx43 

expression is required for certain epidermal physiological processes, such as wound 

healing, but that its chronic loss can also be detrimental to other processes involving 

keratinocyte differentiation.  

Cx26 is also a critical regulator of epidermal health, and has been identified in the 

epidermal response to wounding, regulating processes such as proliferation and 

differentiation. For example, a transient increase in Cx26 expression is necessary in 

epidermal healing after mechanical wounding (Goliger and Paul, 1995; Kretz et al., 2003). 

Human chronic non-healing wounds have been shown to persistently express Cx26 and 

Cx30 at wound margins throughout the healing process (Brandner et al., 2004), and 

persistent Cx26 expression in murine epidermis resulted in keratinocyte hyperproliferation, 

hindering wound closure (Djalilian et al., 2006). Collectively, these studies outline the 

critical role of Cx26 in regulating keratinocyte proliferation. The critical role of Cx26 in 

keratinocyte differentiation is highlighted by the fact that its regulated expression is 

required for epidermal barrier acquisition in murine development (Djalilian et al., 2006).  

Autosomal dominant mutations in the gene encoding Cx26 (GJB2) have also been linked 

to a multitude of skin pathologies that are often characterized by epidermal thickening and 

keratinocyte hyperproliferation. For example, GJB2 has been identified as a psoriasis 

susceptibility locus in Chinese populations (Sun et al., 2010), and Cx26 expression was 

found to be upregulated in human hyper-proliferative psoriatic lesions (Labarthe et al., 

1998); Scott et al., 2012). In addition, autosomal dominant mutations in GJB2 have also 

been directly associated with the development of human skin diseases such as, 

palmoplantar keratoderma (PPK), Vohwinkel syndrome, keratitis ichthyosis deafness 

(KID) syndrome, Bart-Pumphrey syndrome, and hystrix-like ichthyosis deafness syndrome 

(Scott et al., 2012). However, it is interesting to note that while mutations in GJB2 result 

in a wide array of skin pathologies, patients that are homozygous for some mutations that 

completely abolish Cx26 associated GJIC do not present with skin disease (D’Andrea et 

al., 2002). It has been postulated that this is due to compensation from the wide array of 

other connexin proteins expressed amongst the epidermal strata (Scott et al., 2012). As 
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such, a multitude of connexin-disease linked mechanisms have been identified, especially 

for mutations in GJB2. These mechanisms include mutations that not only possess loss of 

function and impaired GJIC (Vohwinkel Syndrome), but also include trafficking defects, 

aberrant or leaky hemichannels, and dominant negative effects on WT connexins or other 

connexin types (Scott et al., 2012). Collectively, these studies demonstrate the crucial role 

that connexins play in maintaining overall keratinocyte health and function.  

1.1.6 UV-induced Epidermal Pathogenesis  

Despite the well-established importance of Cx43 and Cx26 in epidermal health, their roles 

in the epidermal response to common environmental insults, including UV radiation, are 

poorly understood. This is of concern as exposure to UV radiation can lead to both acute 

and chronic skin damage, ranging from sunburn and epidermal desquamation to UV-

induced tumorigenesis (DeGruijl, 1999). Solar UV rays that reach the earth’s surface can 

be primarily broken down into two different wavelengths, UVA (320-400 nm) and UVB 

(290 – 320 nm) (Bernerd et al., 2000). Exposure to both UVA and UVB have been widely 

implicated in the induction of both long term and acute epidermal pathogenesis (Bernerd 

et al., 2000; Ichihashi et al., 2003). UVB has been deemed the primary carcinogen linked 

to the development of skin cancers, causing significant DNA damage in the form of 

cyclobutane pyrimidine primers. In addition, both UVA and UVB radiation have been 

shown to damage skin by stimulating the production of reactive oxygen species (Ichihashi 

et al., 2003). This has been linked to long term skin damage including photoaging and skin 

cancer development (Ichihashi et al., 2003; DeGruijl, 1999). In addition, exposure to UV 

radiation has been shown to disrupt the epidermal permeability barrier (Haratake et al., 

1997).  

To delineate the mechanisms behind UV-induced epidermal pathogenesis, current studies 

have started to investigate the role of Cx43 and GJIC in the epidermis’ acute response to 

UV exposure (Bellei et al., 2008; Gambichler et al., 2008). However only two reports have 

discussed this gap in knowledge. For example, in human keratinocytes, Cx43 and GJIC 

have been proposed to be downregulated in response to UVA radiation (Bellei et al., 2008), 

but upregulated in response to UVB (Gambichler et al., 2008). Furthermore, not only does 
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the significance of these changes in Cx43 expression remain unclear, but the role of Cx26 

in the epidermal response to UV radiation is completely unknown. 

1.1.7 Connexins in Skin Cancer 

Normally, to prevent skin cancer formation, cells are maintained under tight homeostatic 

control to maintain the overall function and health of their residing tissue (Dbouk et al., 

2009). Accordingly, the disruption of this process can lead to the development of diseases, 

such as cancer. Specifically, skin cancers can arise from the uncontrolled proliferation of 

keratinocytes and melanocytes. Common keratinocyte derived skin cancers can be broken 

down into either squamous or basal cell carcinomas, depending on which layer of the 

epidermis the cancer originates (Seebode et al., 2016). If keratinocytes that comprise the 

basal layer experience uncontrolled growth and proliferation, the resulting cancer is termed 

basal cell carcinoma (BCC). However, if it is the squamous suprabasal keratinocytes that 

undergo this change, the resulting cancer is termed squamous cell carcinoma (SCC) 

(Seebode et al., 2016). Accordingly, one non-keratinocyte derived cancer, termed 

melanoma, can develop if the melanocytes in the epidermis undergo uncontrolled 

proliferation and growth (Bandarchi et al., 2010). In addition, the long-term effects of UV-

induced epidermal damage have been extensively categorized and identified as the primary 

carcinogen responsible for the development of skin cancers. For example, more than 90% 

of human keratinocyte derived-tumors (Koh et al., 1996), and more than 86% of human 

melanomas have been directly attributed to UV-induced mutations (Parkin et al., 2011). 

Cancer cells have long since been reported to lack normal intercellular communication, 

including GJIC (Loewenstein and Kanno, 1966). This may be a consequence of GJIC being 

able to spread cell-killing signals (i.e. Ca2+). Therefore, its loss may be a mechanism of 

tumor cell survival (Haass et al., 2004). As such, the potential regulation of connexins and 

GJIC in tumor progression has become an area of focus (Brandner et al., 2004). In this 

pursuit, studies have reported a loss or down-regulation of connexins and/or GJIC in an 

array of different cancers, including hepatocellular carcinoma (Eghbali et al., 1991), colon 

cancer (Friedman & Steinberg, 1982), prostate cancer (Tsai et al., 1996), and mammary 

carcinomas (Hirschi et al., 1996), in addition to SCC, BCC and melanoma (Haass et al., 

2006; Tada and Hashimoto, 1997; Haass et al., 2010). However, while connexins often 
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appear to act as tumor suppressors in this respect, the role of connexins is highly dependent 

on the tumor type and stage of disease. Considerable evidence suggests that Cx43 and Cx26 

can act as either tumor facilitators or tumor suppressors, depending on the disease state 

(Brandner and Haass, 2013). However, the mechanisms responsible for the biphasic effects 

of connexins have not been clearly delineated. Furthermore, there are gaps in our 

understanding of how altered cell-cell communication in the skin affects keratinocyte or 

melanocyte homeostasis resulting in skin cancer development (Brandner and Haass, 2013; 

Haass and Herlyn, 2005). Therefore, further research is required to delineate the possible 

mechanisms behind skin cancer progression, to ultimately develop preventative strategies. 

1.1.8 Connexins in Squamous and Basal Cell Carcinomas 

While the role of connexins in melanocyte regulation is still in question, GJIC has been 

extensively linked to the regulation of keratinocyte growth, differentiation, and migration 

(Haass et al., 2004). Reductions in connexin function or GJIC are correlated with 

keratinocyte deregulation and the development of SCCs or BCCs (Tada & Hashimoto, 

1997). Furthermore, studies have reported that keratinocyte-derived tumors have reduced 

Cx43 function, which in turn results in increased keratinocyte proliferation and migration 

(Haass et al., 2010; Mori et al., 2006; Tada and Hashimoto, 1997). This suggests a 

protective role for Cx43 in the early stages of keratinocyte tumorigenesis. In contrast, 

reports show that Cx26 is expressed in hyper-proliferative skin, as well as up-regulated in 

both SCCs and BCCs, predominately in the more invasive areas (Haass et al., 2006). These 

findings suggest that Cx43 and Cx26 may have complicated roles in the initiation and 

progression of keratinocyte-derived skin cancers, and further studies are required to define 

the potential of these proteins as therapeutic targets in SCCs and BCCs.  

1.1.9 Connexins in Melanomas 

Under basal conditions, melanocytes form an epidermal melanin unit with surrounding 

keratinocytes. The keratinocytes within this unit have been suggested to provide 

homeostatic regulatory signals to assist proper melanocyte division (Haass and Herlyn, 

2005; Haass et al., 2004).  These include the release of paracrine growth factors, secondary 

messengers, as well intercellular connections including cell-cell adhesions, cell-matrix 
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adhesions, and possibly GJIC (as reviewed by Haass et al., 2005). Furthermore, in 

melanoma progression, melanoma cells have been proposed to escape interactions with 

keratinocytes as they undergo uncontrolled cellular division and invade across the 

basement membrane (Haass and Herlyn, 2005).  Surprisingly, only a handful of studies 

define keratinocyte-melanocyte intercellular communication (Hunter and Pitts, 1981; Hsu 

et al., 2000), and only one suggests that this could possibly be mediated by Cx43 associated 

GJs (Hsu et al., 2000). This report does not show evidence of prominent Cx43 associated 

GJ plaques at the keratinocyte-melanocyte interface (Hsu et al., 2000), which would 

implicate this connexin in the heterocellular interaction between these two primary cell 

types. Interestingly, Cx43 has been proposed to be downregulated during normal 

melanocyte division, as melanocytes separate from surrounding keratinocytes to divide 

(Haass and Herlyn, 2005), and in immunofluorescence of human primary cutaneous 

melanoma compared to the surrounding epidermis (Haass et al., 2010). However, while 

Cx43 has been identified as a possible mediator of melanocyte homeostasis, studies have 

shown that Cx43 can act as both a tumor suppressor (Naus and Laird, 2010; Ableser et al., 

2014) and a tumor facilitator (Elzarrad et al., 2008; Rezze et al., 2011; Sargen et al., 2013). 

Therefore, the role of Cx43 in epidermal melanocyte homeostasis and human melanoma 

progression remains unclear. 

As such, recent studies have begun to address the controversial role of Cx43 and Cx26 

function in the epidermis. For example, Ableser et al. (2014) showed that the ectopic 

expression of Cx43 in the B16-BL6 mouse melanoma cell line significantly reduced 

uncontrolled melanocyte proliferation and growth, while ectopic Cx26 expression did not 

(Ableser et al., 2014). In addition, there are few studies that have investigated the 

expression of Cx43 in human primary cutaneous melanomas (Haass et al., 2010; Sargen et 

al., 2013). However, these reports are controversial, where one study reported the absence 

of Cx43 expression in primary cutaneous melanomas (Haass et al., 2010), others reported 

its increased expression (Sargen et al., 2013; Rezze et al., 2011). Furthermore, neither of 

these investigations assessed the localization patterns of Cx43 to determine if its 

localization was consistent with Cx43 playing a role in cell-cell communication as fully 

assembled gap junctions, which is a focus of our current study. In addition, existing reports 

have found an absence of Cx26 in primary melanoma tumors (Haass et al., 2006; Sargen 
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et al., 2013), which may not be surprising as there is no evidence that human epidermal 

melanocytes express Cx26 normally. Therefore, in order to address outstanding questions 

regarding the role of connexins in melanocytes, and human melanoma progression we 

began to assess the potential biphasic role of Cx43 in melanocyte homeostasis in vivo and 

it possible role(s) in tumorigenesis. 

1.1.10 Mouse Models to Assess the Roles of Cx26 and Cx43 in the 
Skin 

The first mouse model that we employed in our current study, Cx43I130T/+, globally 

expresses an autosomal dominant missense mutation that results in an isoleucine to 

threonine mutation located in the cytoplasmic loop of the Cx43 protein, as previously 

described (Kalcheva et al., 2007). However, the characterization of the skin in the 

Cx43I130T/+ mouse model has been limited even though Cx43 is prominently involved in 

epidermal maintenance and function (Dbouk et al., 2009; Scott et al., 2012). Previous 

studies have shown that while the expression of Cx43I130T/I130T is embryonic lethal, murine 

Cx43I130T/+ heterozygotes possess aberrant Cx43 phosphorylation and trafficking, with a 

resultant decrease in GJ functional conductance (Kalcheva et al., 2007; Stewart et al., 2013; 

(Seki et al., 2004). Therefore, this mutant mouse is useful to examine how decreased Cx43 

associated GJIC affects skin homeostasis, including its susceptibility to skin tumor 

initiation and progression. Furthermore, this mutant mouse mimics the mutated Cx43 

protein that is also found to cause human oculodentodigitial dysplasia (ODDD) (Kalcheva 

et al., 2007; Laird, 2008).  As such, it can also provide insight on Cx43 function in skin 

cancer that can be extrapolated to the human ODDD population.  

In addition, we generated a novel Cx26 mutant mouse to define the role of Cx26 in the 

regulation of keratinocytes. Cx26CK14-S17F/+ mice express the autosomal dominant S17F 

mutant, located within the amino terminus of the Cx26 protein, specifically in keratinocytes 

where keratin14 (K14) is expressed (Figure 1.2). A constitutive Cx26S17F/+ transgenic 

mouse had previously been created and analyzed as a model mimicking the Cx26 S17F 

mutation observed in human patients suffering from keratitis–ichthyosis–deafness (KID) 

syndrome (Schütz et al., 2011). While this study found that the global expression of 

Cx26S17F/S17F was embryonic lethal, surviving murine heterozygotes displayed many  
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Figure 1.2: Breeding structure for the creation of the tissue specific Cx26K14-S17F/+ mouse 

model and WT littermates. 
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similar symptoms to that of human KID patients, including skin hyperplasia and hearing 

impairments (Schütz et al., 2011). In addition, the Cx26 S17F protein has been shown to 

traffic normally to the plasma membrane and can successfully form gap junction plaques 

(Richard et al., 2002). However, in comparison to WT protein function, dye-coupling 

studies showed a significant reduction in gap junctional conductance (Richard et al., 2002), 

in addition to a complete loss in biochemical coupling and hemichannel activity (Lee et al., 

2009). Furthermore, the Cx26 S17F mutant has also been shown to exhibit aberrant 

interactions, including a strong transdominant-negative effect on WT Cx43 when co-

expressed in HeLa cells, in addition to increased hemichannel currents when co-expressed 

with WT Cx26 (Garcia et al., 2016). As such, we anticipate that Cx26K14-S17F/+ mice possess 

a major reduction in gap junction conductance in keratinocytes. Moreover, we can examine 

how a reduction in Cx26 associated GJIC affects the regulation of the skin, and it’s possible 

role in tumor onset and progression.  

1.1.11 Hypothesis 

We hypothesize that Cx43 and/or Cx26 play protective roles against UV induced damage 

to maintain the health of the epidermis. Therefore, impairments in Cx43 or Cx26 GJIC will 

result in impaired skin health and homeostasis, including increased susceptibility to UV 

radiation and skin cancer development.  

To address this hypothesis, we examined the physiological response of two mutant mouse 

lines with greatly reduced connexin function when unchallenged and when challenged with 

UV radiation. Furthermore, using primary murine keratinocytes and melanocytes we 

assessed connexin expression and coupling status to better elucidate the roles of Cx43 in 

epidermal homeostasis. Finally, we addressed the proposed tumor suppressor role of Cx43 

by examining its expression throughout all stages of human melanoma disease progression.  

1.1.12 Objectives 

My specific aims are as follows:  
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Aim 1: Determine the significance of Cx43 and Cx26 in epidermal homeostasis using two 

mouse models (Cx43I130T/+ and Cx26K14-S17F/+) in unchallenged and UV challenged dorsal 

skin.  

Aim 2: Determine the expression levels of Cx43 in melanocytes and assess if mice with 

compromised Cx43 function are more susceptible to skin tumors upon UV insult.   

Aim 3: Determine the expression and localization of Cx43 in primary and metastasized 

human melanomas. 
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2.1 Summary 
The roles of connexins in modulating epidermal homeostasis in response to UV radiation 

and UV - induced skin cancer remain largely undefined. In order to address the role of 

Cx26, we successfully created the Cx26K14-S17F/+ mouse model that conditionally expresses 

the Cx26 S17F loss-of-function mutant protein in keratinocytes. We showed that Cx26K14-

S17F/+ mice are viable and mimic the skin disease seen in patients suffering from keratitis-

ichthyosis-deafness syndrome. We analyzed the dorsal skin of Cx26K14-S17F/+ and 

Cx43I130T/+ neonates (with reduced connexin function), when unchallenged and when 

exposed to UV radiation. Cx26K14-S17F/+ neonates did not survive after a single exposure to 

14 kJ/m2 of UV radiation or exposure of 6.2 kJ/m2 every day for 5 consecutive days. In 

addition, while both mouse lines did not show any significant differences in epidermal 

permeability or basement membrane integrity, Cx26K14-S17F/+ neonates showed increased 

susceptibility to UV-induced skin damage, as evidenced by rapid epidermal desquamation 

compared to controls post exposure. In contrast, Cx43I130T/+ mice were relatively unaffected 

by UV insult, did not develop tumors of melanocyte or keratinocyte origin within 6 months 

after UV exposure, and their skin appeared normal. In addition, while primary keratinocyte 

cultures express Cx43, primary murine melanocytes show no evidence of Cx43 expression 

and were not functionally coupled by gap junctions. However, human melanoma 

metastases to distant organ sites showed increased Cx43 expression, but little evidence of 

Cx43 gap junction assembly. Collectively, these studies strongly suggest that Cx26 is 

critical in protecting keratinocytes from acute UV damage, and that Cx43, although not 

evident in primary melanocytes, is expressed in metastasized human melanomas. 

A version of this chapter is in preparation for submission to The Journal of Investigative 

Dermatology. 

Alaga KC, Press ER, Barr K, Crawford M, Dagnino L, Laird DW. The differential roles 

of Connexin26 and Connexin43 in modulating epidermal health in response to UV injury.  
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2.2 Introduction 

Skin is the largest organ in the body where the stratified layers of differentiated 

keratinocytes constitute the major component of the epidermis (Scott et al., 2012). 

Melanocytes reside within the basal layer of the epidermis and distribute melanin pigment 

to surrounding keratinocytes to protect against UV-induced DNA damage (Klein-szanto et 

al., 1994). The dynamic coordination of keratinocytes and melanocytes enables the 

epidermis to protect the body against environmental insults, dehydration, and external 

pathogens (Baroni et al., 2012). Deregulation of these cells has been directly linked to the 

development of a wide variety of skin diseases, including loss of barrier function, altered 

wound healing, and cancers (as reviewed by Scott et al., 2012). Thus, epidermal 

homeostatic control is critical and often involves dynamic homocellular and heterocellular 

interactions, facilitated by gap junction (GJ) channels assembled from connexins (Haass et 

al., 2004).  

Connexins encompass a 21-member family of integral membrane proteins that form gap 

junction channels to allow for the intercellular transfer of ions and small molecules (< 1 

kDa), termed gap junctional intercellular communication (GJIC) (Söhl and Willecke, 

2003). Connexin proteins oligomerize in the endoplasmic reticulum or Golgi apparatus into 

hexameric channels (termed connexons), which then translocate to the plasma membrane 

where they can dock with a connexon from an adjacent cell to form a gap junction channel 

for direct exchange of cytosolic signaling molecules (Dbouk et al., 2009). This exchange 

is essential for regulating controlled cellular events, such as proliferation, differentiation, 

and migration (Scott and Kelsell, 2011). In addition to their primary function in GJIC, 

connexins also provide regulatory control via an extensive network of protein interactions 

(Vinken et al., 2012; Giepmans, 2004; Laird, 2010). Furthermore, the expression profile of 

connexins is tissue-specific, and can be altered in many pathologies, highlighting their 

complex regulation during both health and disease.  

Specifically, as many as 10 connexins are differentially expressed throughout the strata of 

epidermal keratinocytes and play a variety of roles in regulating cellular behaviour to 

maintain overall tissue health and function (Scott and Kelsell, 2011; Laird, 2006). Among 
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these, connexin43 (Cx43) and connexin26 (Cx26) are expressed predominately in the 

stratum basale and spinosum, and the suprabasal layers of the epidermis, respectively 

(Richard, 2000; Kretz et al., 2004; Laird, 2006). Studies in both humans and mice report 

that a transient decrease in Cx43 expression is necessary for epidermal healing after 

wounding (Kretz et al., 2003; Brandner et al., 2004), and keratinocyte proliferation (Pollok 

et al., 2011; Churko et al., 2012). However, truncating the c-terminal tail of Cx43 results 

in aberrant murine skin barrier formation and keratinocyte differentiation (Maass et al., 

2005). Similarly, a transient increase in Cx26 expression is necessary in epidermal healing 

after mechanical wounding (Goliger and Paul, 1995; Kretz et al., 2003) and its regulated 

expression is required for epidermal barrier acquisition in murine development (Djalilian 

et al., 2006). Furthermore, germline mutations in the genes encoding Cx43 (GJA1) or Cx26 

(GJB2) are associated with a variety of human skin diseases, including palmoplantar 

keratoderma (PPK), and keratitis-ichthyosis-deafness (KID) syndrome (Scott et al., 2012; 

Avshalumova et al., 2014). Collectively, these studies demonstrate the crucial role that 

connexins play in maintaining overall epidermal health and function. However, despite the 

vast array of connexin species expressed throughout keratinocyte layers, little is known 

about the connexin profile of melanocytes. Some preliminary evidence suggests that 

melanocytes express Cx43 and exhibit GJIC both in melanocyte monoculture, and in 

melanocyte-keratinocyte co-culture (Hsu et al., 2000).  However, other than one study that 

reports Cx26 expression in melanocytes of the vestibular dark area of the ear, there is no 

information on whether Cx26 is expressed in epidermal melanocytes (Masuda et al., 2001). 

Despite the well-established importance of Cx43 and Cx26 in epidermal health, their roles 

in the epidermal response to common environmental insults, including UV radiation, are 

poorly understood. This is of concern as exposure to UV radiation can lead to both acute 

and chronic skin damage, ranging from sunburn and epidermal desquamation to UV-

induced tumorigenesis (IARC, 2012; DeGruijl, 1999). Current studies have begun to 

delineate the role of Cx43 and GJIC in the acute epidermal response to UV radiation (Bellei 

et al., 2008; Gambichler et al., 2008), however these reports are limited. In human 

keratinocytes, Cx43 and GJIC have been proposed to be downregulated in response to 

UVA radiation (Bellei et al., 2008), but upregulated in response to UVB (Gambichler et 

al., 2008). Furthermore, not only does the significance of these changes in Cx43 expression 
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remain unclear, but the role of Cx26 in the epidermal response to UV radiation is 

completely unknown.  

The long-term effects of UV-induced epidermal damage have been extensively categorized 

and identified as the primary carcinogen responsible for the development of skin cancers. 

For example, more than 90% of human keratinocyte derived-tumors (Koh et al., 1996), and 

more than 86% of human melanomas have been directly attributed to UV-induced 

mutations (Parkin et al., 2011). However, the role of connexins in human squamous cell 

carcinomas (SCCs), basal cell carcinomas (BCCs), and melanomas remain controversial. 

In the few characterizations of connexins in human skin cancers, Cx43 and Cx26 have been 

proposed to act as either tumor facilitators or as tumor suppressors depending on the stage 

and type of disease, suggesting a complex role for these proteins in disease progression 

(Laird, 2010). For example, immunohistochemistry revealed that Cx26 was upregulated in 

human keratinocyte-derived tumors (Haass et al., 2006), but was not expressed in 

melanocyte-derived tumors (Haass et al., 2006; Sargen et al., 2013), but no subcellular 

localization of Cx26 was provided raising questions as to whether Cx26-based gap 

junctions were formed. However, Cx26 was also found to be upregulated in the 

keratinocytes directly adjacent to malignant melanomas, suggesting a possible role in the 

tumor soil (Haass et al., 2010). In addition, human keratinocyte-derived tumors expressed 

low levels of Cx43, which was postulated to allow increased keratinocyte proliferation and 

migration (Haass et al., 2006). The role of Cx43 in human melanoma remains controversial. 

Tissue microarray analysis, and immunohistochemistry of primary cutaneous human 

melanoma revealed increased Cx43 expression in comparison to melanocytic nevi, 

suggesting it may have a possible role as a tumor facilitator (Rezze et al., 2011; Sargen et 

al., 2013); while another study reports its decreased expression (Haass et al., 2004). Despite 

these initial investigations, a thorough characterization of the expression and localization 

of Cx43 throughout the different stages of human melanoma progression remains 

unknown.  

To better elucidate the roles of Cx43 and Cx26 in epidermal homeostasis, two mutant 

mouse models (Cx43I130T/+, Cx26K14-S17F/+), that possess a significant reduction in GJIC, 

were analyzed when unchallenged and when exposed to UV radiation. The Cx43I130T/+ 



www.manaraa.com

 35 

mouse has been previously described (Kalcheva et al., 2007), and has been shown to 

possess aberrant Cx43 phosphorylation and trafficking, with a resultant systemic decrease 

in GJ functional conductance by approximately 50% (Stewart et al., 2013; Seki et al., 

2004). Furthermore, these mice mimic the same mutation seen in a subset of human 

oculodentodigital dysplasia (ODDD) patients (Kalcheva et al., 2007). In addition, we have 

generated a novel Cx26 mutant mouse (Cx26K14-S17F/+) to better define the role of Cx26 in 

the regulation of keratinocytes.  Cx26K14-S17F/+ mice harbor the autosomal dominant S17F 

missense mutation in tissues that also express keratin14 (K14), which includes 

keratinocytes. Previous studies have shown that the Cx26 S17F protein is trafficked 

normally to the plasma membrane and assembles into gap junction-like structures, but the 

resulting channels are not functional (Lee et al., 2009). Furthermore, the expression of the 

Cx26 S17F protein has also been directly linked to KID syndrome in human patients. 

Therefore, both mouse lines can not only be used as models of inherited channelopathy, 

but also provide insight into the role of Cx43 and/or Cx26 in the health of ODDD and/or 

KID patient skin upon exposure to a common environmental insult. In addition, to further 

address the roles of connexins in skin health and cancer, we analyzed Cx43 expression and 

cellular localization in human melanoma samples from primary cutaneous tumor, nodal 

metastases, and metastases to distant organ sites.  

Using both connexin mutant mouse lines and a cohort of human melanomas, we sought to 

address the possible protective roles of Cx43 and Cx26 in the maintenance of unchallenged 

and UV-challenged epidermis. Cx26K14-S17F/+ mice were viable but exhibited impaired 

epidermal health when unchallenged, and this effect was exacerbated in response to UV 

injury, resulting in high mortality soon after UV exposure. Cx43I130T/+ mice did not show 

any adverse effect from UV exposure, nor did they exhibit increased propensity to UV-

induced skin cancers of keratinocyte or melanocyte origin. Although keratinocytes 

abundantly express both Cx43 and Cx26, primary murine melanocytes did not exhibit 

connexin expression or GJIC in primary cultures. In addition, Cx43 was poorly expressed 

in primary melanoma tumors as well as in nodal metastases, but was prominently expressed 

intracellularly in melanoma metastases found in a variety of distant organ sites. Taken 

together, these studies strongly suggest that Cx26 is critical in protecting keratinocytes 
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from immediate UV damage, while Cx43 may play a more complex role in the progression 

of late stage melanomas.  

2.3 Materials and Methods 

2.3.1 Animals 

Heterozygote mice (Gja1tm3GFi, Cx43I130T/+) expressing the disease-causing I130T amino 

acid substitution that results in reduced Cx43 associated GJ function, were generated by 

Kalcheva and colleagues (2007) and bred on a background of CD1 and C57BL/6 

(generously provided by Dr. Glenn Fishman). All Cx43I130T/+ (also referred to as I130T/+ 

mice in this study) mice and their wild-type (WT) littermates were used at generation 6-10 

of backcrossing on to C57BL/6. Heterozygote mice (Cx26K14-S17F/+, also referred to as 

S17F/+ mice in this study) expressing the disease-causing S17F mutation, that reduces 

Cx26 associated GJ function, were created in-house. Mice heterozygous for loxp floxed 

WT Gjb2 (Cx26floxS17F/+, C57BL/6 and 129Sv) were generously provided by Dr. Klaus 

Willecke (Schütz et al., 2011) and mated with homozygous keratin14 (K14) - Cre 

(Gjb2tm2.2Kwi/Cnrm, Jackson Labs) mice to conditionally express the Cx26 S17F mutant 

protein in the epidermis, oral ectoderm, and dental epithelium (Dassule et al., 2000). For 

both mouse lines, both male and female littermates were used as controls, kept on a 12h/12h 

light-dark cycle, and given food (2018 Teklad 18% Global Diet, Harlan) and water ad 

libitum. The Animal Care Committee at The University of Western Ontario has approved 

all experiments performed in this study (Appendix D).   

2.3.2 Human Melanoma Samples 

Human melanoma samples and normal controls were provided by the Ontario Tumor Bank 

(OTB), which is funded by the Ontario Institute of Cancer Research (OICR). All cases 

were verified by a pathologist at the OICR before use. Paraffin embedded sections (5 µm) 

of primary cutaneous tumor (N = 14), nodal melanoma metastases (N = 15), and melanoma 

metastases from distant organ sites (N = 7), in addition to normal controls (N = 3, N =1, N 

=3) were selected from the OTB database (Appendix A) for analysis. Distant tumors 

represent metastasized melanomas isolated from either lung, kidney, bone, or pelvic wall 

(Appendix A). To avoid the possible inclusion of adjacent normal tissue in analysis, the 
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core and its surrounding radius of all tumor samples was analyzed for Cx43 expression 

using immunofluorescence. All work with human specimens was approved by The Human 

Science Research Ethics Board at the University of Western Ontario (Appendix E).  

2.3.3 Histology  

Mice (3 days of age) were euthanized by decapitation and dorsal skin sections were 

collected and fixed in 10% neutral buffered formalin overnight at 4°C. Tissues were 

processed, paraffin embedded, and cut into transversal sections (6 µm) for further analysis. 

Paraffin embedded sections were deparaffinized in xylene and rehydrated in decreasing 

ethanol concentrations (100%, 95%). Sections were stained with 1% Harris Hematoxylin 

for 1 minute, followed by 1% eosin for 2 minutes (Lerner Laboratories). Stained tissues 

were then hydrated in increasing ethanol concentrations (100%, 95%), followed by xylene 

baths prior to mounting with Cytoseal (Richard-Allan Scientific), as previously described 

(Stewart et al., 2013). Stained tissue was imaged using a Leica DM IRE2 inverted 

epifluoresence microscope with ProgRes C5 camera (Jenoptik) and ProgRes Mac 

CapturePro 2.7.6 imaging software.  

2.3.4 UV Radiation  

UV radiation was performed using a 302 nm UV lamp with filter (UVP, Upland, CA) at a 

fixed distance of 45 cm, and dosage controlled using a digital radiometer and sensor (UVX-

31; UVP) with a peak sensitivity calibrated to 302 nm (Appendix B). Cx43I130T/+, Cx26K14-

S17F/+ neonates, and their WT littermates (3 days of age) were placed in plastic containers 

and irradiated either once (14 kJ/m2), or every day for 5 consecutive days (6.2 kJ/m2). Sham 

treated neonates (3 days of age) were placed in the holding apparatus for the same dosage 

time but not exposed. The survival of these mice was recorded daily during the first two 

weeks, and subsequently on a weekly basis, until they were euthanized at 6 months using 

CO2. At 6 months of age, the dorsal hair of surviving mice was shaved, and chemically 

removed with Nair, prior to the collection of dorsal skin sections that possessed low and 

high levels of pigment. Dorsal skin from unchallenged and UV challenged (24 hours post 

exposure to 14 kJ/m2) neonates was cryopreserved in 30% sucrose overnight at 4°C, before 

being embedded in 18% sucrose and 1% UltraPure Low Melting Point Agarose 
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(Invitrogen, 15517-022). Tissues were sectioned at -25°C into transversal sections (14 µm) 

for analysis. Dorsal skin from mice 6 months after UV exposure were fixed overnight at 

4˚C with 10% neutral buffered formalin prior to being embedded in paraffin, cut into 6µm 

transverse sections, and analyzed for evidence of keratinocyte and/or melanocyte 

tumorigenesis using immunofluorescence.  

2.3.5 Toluidine Blue Penetration  

The epidermal permeability barrier to water was assessed for both mouse lines and their 

WT littermates before and 8 hours after exposure to 14 kJ/m2 of UV radiation. Both 

unchallenged and challenged neonatal mice (1 day of age) were euthanized with carbon 

dioxide (CO2) for 30 minutes. To assess epidermal permeability barrier function, mice were 

placed in increasing methanol concentrations for one minute (25%, 50%, 75%, 100%, 

diluted in PBS), equilibrated in PBS for one minute, and subsequently stained using 0.02% 

toluidine blue solution (diluted in distilled water) for 15 minutes. Mice were then washed 

in 90% ethanol (diluted in distilled water) for one minute three times, and once in distilled 

water for the same duration (Schütz et al., 2011). After staining, mice were allowed to air 

dry and imaged using digital photography. As a positive control, a small section on the side 

of a WT littermate was washed with 2 ml of acetone or lacerated to artificially break down 

the epidermal barrier prior to the staining procedure.   

2.3.6 Primary Murine Cell Cultures 

The dorsal skin was collected from WT mouse neonates (2 – 3 days of age) as previously 

described (Churko et al., 2012). Neonates were obtained and euthanized by inhalation of 

CO2 for 30 minutes, immersed in 70% ethanol for 5-10 seconds for sterilization, and 

washed with PBS (without Ca2+ or Mg2+). Neonatal dorsal skin was excised and washed 

twice in PBS (without Ca2+ or Mg2+) and remaining pieces of muscle were removed. Skin 

was isolated from each pup, placed in separate wells that contain 2 ml of dispase (5000 

CU, Corning, 354235) and rocked overnight at 4°C to separate the epidermis from the rest 

of the skin.  

Isolation of primary murine melanocytes was accomplished as previously described 

(Kumar et al., 2012), with the following modifications. Following dispase incubation, 6-8 
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epidermises were separated, minced, and transferred to tubes containing 0.5 µl of 0.25% 

Trypsin/EDTA solution per epidermis. The epidermis was then incubated on a rocker for 

10 minutes at 37°C, and then double the amount of Trypsin Neutralizing Solution (Gibco, 

R002100) was added. The suspension was re-suspended continuously to release single cells 

from epidermis, passed through a 70-micron strainer, and centrifuged for 10 minutes at 

1000 rpm. Supernatant was then removed and the pellet was re-suspended in 5 ml of 

Clonetics Melanocyte Growth Medium-4 (MGM-4 Bullet Kit, CC-3249) with Endothelin 

3 Lyophilized (ET3, Lonza, CC-4510). Cells were then counted with an automated cell 

counter (Countess, Life Technologies) and 1 x 106 cells were plated on 60mm dishes. 

Medium was changed the following day and subsequently every two days. Melanocytes 

were passaged when they were 80% confluent, which occurs approximately 1 – 2 weeks 

post-plating. Adherent cells are rinsed with PBS (without Ca2+ or Mg2+) and released by 

digestion using 0.25% Trypsin/EDTA incubated at 37°C for varying times depending on 

the number of passages (P1 – 6 minutes, P2 – 7 minutes, P3 – 8 minutes, P4 – 9 minutes). 

After incubation, Trypsin Neutralizing Solution was added and the suspension was 

centrifuged at 1000 rpm for 10 minutes. The pellet was re-suspended in MBM-4 + ET3 

medium and cells were counted with an automated cell counter (Countess, Life 

Technologies) and plated. Cells analyzed by immunohistochemistry were plated on 

coverslips coated with rat-tail collagen type 1 as previously described (BD Biosciences, 

354236). 

For primary keratinocyte cultures, isolated skin was incubated overnight in dispase at 4°C, 

subsequently the epidermis was separated, minced, and 1 ml of 0.25% Trypsin/ EDTA was 

added per tissue and incubated for 10 minutes at 37°C. Trypsin/cell solution was then 

removed and centrifuged at 1000 rpm for 3 minutes. Thereafter, the pellet was first 

suspended in 2 ml of Trypsin Neutralizing Solution and 2 ml of cold 1.4 mM calcium 

diluted in Keratinocyte - Serum Free Media (K-SFM, Gibco, 10724-011) with human 

recombinant factor and bovine pituitary extract (Gibco, 37000-015). The pellet was 

centrifuged again and then re-suspended in 2 ml of cold 0.05 mM calcium diluted in K-

SFM. Suspension was then filtered through a 70µm strainer, and cells were counted with 

an automated cell counter (Countess, Life Technologies) prior to being plated on dishes 

coated with rat-tail collagen type 1. To induce keratinocyte differentiation, primary cells 
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were placed in 1.4mM calcium K-FSM 24 hours after isolation, and maintained for an 

additional 24 hours before use (Modified from Churko et al., 2012).  

2.3.7 L-DOPA Staining  

Coverslips with attached melanocytes were removed, washed in PBS (pH 6.8) and fixed in 

4% PFA for 20 minutes at 25˚C. PFA was removed and fixed cells were washed three times 

in PBS (pH 6.8), prior to incubation with 0.1% L-3,4-dihydroxyphenylalanine (L – DOPA) 

(Alfa Aesar, A11311) for 4 hours at 37°C, as previously described (Wang et al., 2013). 

Coverslips were subsequently washed with PBS (pH 6.8) before being mounted on glass 

slides with permount and five images were taken for each passage using a LSM 800 Zeiss 

confocal microscopic using a 40x lens. Images were blinded to the investigator and 

melanocyte purity was calculated by measuring the percent yield of L-DOPA positive cells 

(dark pigmented cells) verses total cells in an image area.  

2.3.8 Calcein-AM Dye Transfer 

P2 primary murine melanocytes and rat epidermal keratinocytes (REKs), which were 

previously isolated and characterized by Baden and Kubilus (1983), were grown to 

confluence on glass bottom dishes in Dulbecco’s Modified Eagle Medium (DMEM, 10% 

FBS), and GJIC was evaluated using a modified dye transfer assay from what has been 

previously described (Goldberg et al., 1995). Calcein-AM (ThermoFisher Scientific, 

C3100MP) dye was diluted in 10 µl of DMSO, and 2 µl of DMSO + Calcein-AM solution 

was added to 1 ml of isotonic solution. Culture media was removed and Calcein-AM in 

isotonic solution was added to plates and incubated for 10 minutes at 37°C. Cells were then 

washed twice in media and then cells that were surrounded by other neighboring cells (N 

= 30) were photo-bleached to 20% of original staining intensity using a 488 nm argon laser 

(80% power). Images were captured every 3 seconds until maximum recovery was reached 

(15 minutes) using a LSM 800 Zeiss confocal microscopy using a 40x lens. Ten cytosolic 

areas (2 mm2) in bleached cell and unbleached non-adjacent cells were selected and mean 

fluorescence intensity was measured over the time course of the experiment using ImageJ 

Time Series Analyzer V3.  
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2.3.9 Immunofluorescence 

Paraffin embedded sections were deparaffinized in xylene and rehydrated in descending 

concentrations of ethanol baths (100, 95, and 70%) before being placed in a sub-boiling 

solution of sodium citrate buffer (0.01M, pH 6.0) for 20 minutes, and cooled in the same 

solution for 10 minutes. Sections were then rinsed with water and PBS for 5 minutes each. 

Both paraffin and cryo-embedded sections were outlined with a hydrophobic marker and 

blocked using 3% blocking serum (3% BSA, 0.2% Triton X-100, 10 ml PBS) for 60 min. 

Slides were probed with rabbit anti-Cx43 (1:300; Sigma-Aldrich, C6219), mouse anti-E-

cadherin (1:200; BD Transduction Labs, 610182), rabbit anti-Ki67 (1:200; Abcam, 15580), 

mouse anti-K14 (1:100; Neomarkers, LL002), or rabbit anti-MITF (1:200; Abcam, 20663), 

overnight at 4°C. Subsequently, cells were incubated with Alexa Fluor 555-conjugated 

anti-rabbit (1:400; Molecular Probes) and/or Alexa Fluor 488-conjugated anti-mouse 

(1:400; Molecular Probes) for 1 hour at 25ºC. Slides were then incubated with nuclear 

Hoescht for 10 minutes at 25ºC (1:1000; Molecular Probes, H3570) prior to mounting using 

Airvol and imaged with confocal microscopy (Stewart et al., 2013).  

Keratinocytes and melanocytes were washed in PBS, and fixed in 4% PFA for 20 minutes 

at 25ºC. Cells were permeabilized with 0.1% Triton X-100 for 10 minutes, prior to blocking 

using a 2% solution of BSA in PBS for one hour at 25ºC. Thereafter, cells were probed 

with either mouse anti-tyrosinase related protein1 (TRP1, 1:200; Abcam 3312), rabbit anti-

Cx43 (1:400), and/or mouse anti-E-cadherin (1:200) overnight at 4°C. Cells were then 

probed with aforementioned secondary antibodies for 1 hour at 25ºC, labeled with nuclear 

Hoescht stain (1:1000), and images were taken using confocal microscopy. 

2.3.10 Immunoblotting  

Following decapitation, dorsal skin was collected from Cx43I130T/+, Cx26K14-S17F/+ neonates 

and their WT littermates both at 3 days of age, and 24 hours post 14 kJ/m2 of UV exposure. 

Tissues were homogenized using liquid nitrogen in 2X immunoprecipitation buffer (2% 

Triton X-100, 300 mM NaCl, 20 mM Tris/HCL (pH 7.4), 2mM EDTA, and 1% Nonidet 

P40, supplemented with complete mini proteinase inhibitor (Roche Diagnostics), and 100 

mM sodium fluoride and 100 mM sodium orthovanadate). Lysates were run on 10% 
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polyacrylamide gels using SDS-PAGE, and protein was transferred to a nitrocellulose 

membrane using iBlot dry transfer. Membranes were then blocked for 1 hour with 3% BSA 

in PBS + Tween 20, and subsequently probed using rabbit anti-Laminin (1:750, Abcam, 

11575) and anti-GAPDH (1:5000, Millipore, MAB374) overnight at 4°C. Blots were then 

washed and stained with Alexa Fluor 680-conjugated anti-rabbit (1:10,000, Molecular 

Probes) and Alexa Fluor 800-conjugated anti-mouse (1:10,000, Molecular Probes) 

secondary antibodies for 1 hour at 25ºC, prior to imaging and quantification with an 

Odyssey infrared imaging system (LiCor) (Stewart et al., 2013). 

2.3.11 Statistical Analysis  

Statistical analyses were performed using GraphPad Prism 6.0 and statistical significance 

was determined (P<0.05). Statistical tests included the unpaired two tailed t test, one-way 

ANOVA with Tukey’s multiple comparison test, or Kaplan Meir Mantel-Cox test. Values 

are presented as means ± S.E.M. N≥3 for all experiments. 

2.4 Results 

2.4.1 Cx26K14-S17F/+ mice are viable, exhibit annular tail restrictions, 
reduced body weight and erythrokeratoderma.   

To characterize the effects of the mutant Cx26 or Cx43 protein in the epidermis we first 

examined Cx26K14-S17F/+ and Cx43I130T/+ mice for any apparent anatomical abnormalities in 

comparison to their WT littermates. Adult Cx26K14-S17F/+ (3 months of age) mice presented 

with annular tail restrictions (Figure 2.1A), and weighed significantly less than their WT 

littermates at 3 months of age (Figure 2.1B) (N = 6). To mitigate sex-biased weight 

differences, bodey weight was calculated for both male and female cohort (Figure 2.1B). 

In addition, the keratinocyte-specific expression of the mutant Cx26 S17F in Cx26K14-S17F/+ 

heterozygotes did not result in any significant impairment in neonatal survival compared 

to WT (Figure 2.1C) (WT: N = 157; Cx26K14-S17F/+: N = 148). Anatomical images of 

Cx43I130T/+ neonates (3 days of age) illustrate the lack of distinct skin abnormalities (Figure 

2.1E). Whereas, full body images of Cx26K14-S17F/+ neonates (3 days of age) show a red 

furfuraceous epidermal phenotype and were distinctively smaller than their WT littermates 

(Figure 2.1D). In   
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Figure 2.1: Cx26K14-S17F/+ mice are viable, exhibit annular tail restrictions, reduced 

body weight, erthyokeratoderma and ichythosis. 

(A) Representative image of annular tail restrictions in Cx26K14-S17F/+ mice compared to its 

WT littermates at 3 months of age. In addition, (B) adult Cx26K14-S17F/+ mice weighed 

significantly less at 3 months of age compared to WT controls (N = 6, ** P < 0.05; two-

way ANOVA), in both male and female cohorts. (C) Cx26K14-S17F/+ mice do not exhibit 

deficits in neonatal survival compared to WT littermates (WT: N = 157, S17F/+: N = 148). 

(D) Representative full body image of red scaly skin phenotype that was observed in 

Cx26K14-S17F/+ neonates (3 days of age) in comparison to their normal WT littermates. In 

contrast, (E) the dorsal skin of Cx43I130T/+ neonates (3 days of age) was not distinctively 

different from their WT littermate controls. (F-I) Dorsal skin sections stained with 

hematoxylin and eosin from (F) Cx26K14-S17F/+ neonates and their (G) WT counterparts (3 

days of age), and (H) Cx43I130T/+ neonates, and their (I) WT counterparts (3 days of age), 

showed no distinct differences in skin or epidermal (insets) integrity. Scale bar = 100 µm. 
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Figure 2.1: Cx26K14-S17F/+ mice are viable, exhibit annular tail restrictions, reduced body weight, erthyokeratoderma 

and ichythosis. 
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addition, neonatal (3 days of age) dorsal skin stained with hematoxylin and eosin revealed 

no gross abnormalities in overall skin structure for both mouse lines. Higher magnification 

of the epidermis also showed no ultrastructural differences in the keratinocytes of either 

mouse line (N = 5) (Figure 2.1F - I).  

2.4.2 Cx26K14-S17F/+ neonates do not survive after UV exposure. 

To assess the possible protective role of Cx26 and Cx43 associated GJIC in protecting the 

epidermis from UV radiation both mouse lines were exposed to either 6.2 kJ/m2 of UV 

radiation every day for five consecutive days (Cx43I130T/+ n = 9, WT n = 12; Cx26K14-S17F/+ 

n = 14, WT n = 22), or 14 kJ/m2 once (Cx43I130T/+ n = 12, WT n = 9; Cx26K14-S17F/+ n = 14, 

WT n = 24) starting at three days of age. Interestingly, compared to exposed WT littermates 

and unexposed sham controls, 86 and 85% of Cx26K14-S17F/+ mice died within 72 hours of 

exposure to either 6.2 kJ/m2 or 14 kJ/m2 of UV radiation, respectively. In contrast, 

Cx43I130T/+ mice possessed no significant differences in survival in response to UV 

radiation (Figure 2.2A, B).  

2.4.3 UV radiation does not destroy barrier function in Cx26K14-

S17F/+ and Cx43I130T/+ neonates. 

It has been well documented that exposure to UV radiation can alter epidermal permeability 

and ultimately disrupt barrier function (Lee et al., 2014).  Thus to determine whether 

reduced survival of Cx26K14-S17F/+ mice was due to impairments in epidermal barrier, 

toluidine blue dye uptake was studied. Interestingly, Cx26K14-S17F/+ and Cx43I130T/+ mice 

showed no evidence of dye uptake, and therefore no loss in barrier function, both when 

unchallenged and when challenged with 14 kJ/m2 of UV radiation (Figure 2.3A, B). Since 

an intact basement membrane has also been defined as an unequivocal requirement for skin 

barrier function (Breitkreutz et al., 2013), the structure and expression of laminin, an 

integral component of the basement membrane, was also examined. 

Immunohistochemistry revealed similar epidermal-dermal localization of laminin in both 

mouse lines compared to their controls before and 24 hours after exposure to 14kJ/m2 of 

UV radiation (Figure 2.4A, B). In addition, immunoblotting revealed no significant  
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Figure 2.2: Cx26K14-S17F/+ but not Cx43I130T/+ neonates die after UV radiation. 

(A) Cx26K14-S17F/+ (N = 14) and Cx43I130T/+ (N= 9) neonates and their WT littermates (N = 

22, N = 9, respectively) were exposed to 6.2 kJ/m2 of UV radiation for 5 consecutive days 

starting at 3 days of age and survival was recorded until remaining mice were euthanized 

at 175 days (6 months). Kaplan Meir survival plot illustrates that Cx26K14-S17F/+ mice died 

quickly (**** P < 0.0001, Log-rank (Mantel-Cox) test) in comparison to WT littermates 

and unexposed sham controls (N = 5). Cx43I130T/+ mice tolerated UV exposure as only two 

mice died. (B) Cx26K14-S17F/+ (N = 14) and Cx43I130T/+ (N= 12) neonates and their WT 

littermates (N = 24, N = 9, respectively) were exposed to 14 kJ/m2 of UV radiation once at 

3 days of age and survival was recorded. Similarly, Cx26K14-S17F/+ mice died sooner than 

their WT littermates, and Cx43I130T/+ neonates survived (**** P < 0.0001, Log-rank 

(Mantel Cox) test). 
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Figure 2.2: Cx26K14-S17F/+ but not Cx43I130T/+ neonates die after UV radiation. 
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Figure 2.3: UV radiation did not perturb the epidermal permeability barrier in 
mutant mice. 

(A) Similar to unchallenged and UV challenged WT littermates (N = 6 and N = 7, 

respectively), negative toluidine blue uptake in unchallenged Cx26K14-S17F/+ (N = 5) and 

challenged Cx26K14-S17F/+ (N = 4) mice indicates an intact epidermal barrier. WT controls 

display positive toluidine blue dye uptake when the epidermal barrier was disrupted with 

acetone (top left panel) or lacerated (bottom left panel). (B) Similarly, the skin of 

unchallenged Cx43I130T/+ (N = 7), UV challenged Cx43I130T/+ mice, and their WT littermates 

(N = 5, N = 6 respectively) did not take up toluidine blue dye.  
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Figure 2.3: UV radiation did not perturb the epidermal permeability barrier in mutant mice. 
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differences in total laminin expression across all experimental groups (Figure 2.4C, D) 

indicating that laminin proteins of the basement membrane are equally expressed in mutant 

mice. Therefore, neither mouse line experienced impairments in barrier function when 

unchallenged or when challenged with UV radiation.  

2.4.4 Cx26K14-S17F/+ develop UV-induced epidermal desquamation  

Another acute injury often incurred by exposure to UV radiation is a sunburn-like 

condition, which is often followed by epidermal desquamation, otherwise known as 

epidermal peeling. Increased degree and rate of epidermal desquamation, has been used as 

a tool to classify UV-reactivity of the skin (Fitzpatrick, 1988). As such, epidermal 

desquamation in both mouse lines and their WT littermates was measured. Interestingly, 

Cx26K14-S17F/+ mice exhibited macroscopic evidence of UV-induced epidermal peeling 

within 48 hours of exposure, while exposed skin from their WT littermates and Cx43I130T/+ 

mice did not show any evidence of epidermal peeling within the same time frame (Figure 

2.5). Collectively, this suggests an increased UV-reactivity in Cx26K14-S17F/+ neonatal skin.   

2.4.5 Cx43I130T/+ mice show no evidence of skin tumors of 
keratinocyte or melanocyte origin after UV insult 

To determine the roles of connexins in UV-induced tumor incidence, surviving mice (6 

months of age) that were exposed to either 6.2 kJ/m2 of UV radiation (Cx43I130T/+ n = 7, 

WT n = 12) or 14kJ/m2 (Cx43I130T/+ n = 11, WT n = 9) at 3 days of age were analyzed for 

keratinocyte and melanocyte tumors. At 6 months no distinct macroscopic abnormalities 

or growths were observed (Appendix C) for either experimental cohort. In addition, low 

pigmented and high pigmented dorsal skin sections of Cx43I130T/+ mice and their WT 

littermates showed similar K14 expression 6 months post exposure to 14 kJ/m2 (Figure 

2.6A), thus indicating a lack of early stage keratinocyte transformation. Dorsal sections 

from both experimental groups did not express the melanocytic specific microphtalmia 

associated transcription factor (MITF) or show evidence of hyper-proliferation (Ki67) in 

immunohistochemistry post exposure to 14 kJ/m2 of UV radiation (Figure 2.6B, C). Dorsal 

sections also showed prominent E-cadherin expression across all  
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Figure 2.4: Unchallenged and UV-challenged mutant mice have an intact basement 

membrane. 

Dorsal skin samples of 3-day-old neonates from both mouse lines were examined for the 

integrity of laminin when unchallenged or 24 hours post exposure to 14 kJ/m2 of UV 

radiation. Unchallenged and UV challenged (A) Cx26K14-S17F/+ and (B) Cx43I130T/+ mice 

and their WT littermates (N = 4) showed no apparent differences in laminin localization or 

expression at the epidermal – dermal interface (P > 0.05, One-way ANOVA with Tukey’s 

multiple comparisons) (C, D). Dotted lines outline stratum corneum, solid line 

approximates epidermal-dermal interface. Scale bar = 20 µm. 
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Figure 2.4: Unchallenged and UV-challenged mutant mice have an intact basement membrane. 
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Figure 2.5: Cx26K14-S17F/+ mice exhibit UV-induced epidermal desquamation 

compared to Cx43I130T/+ mice and WT littermates.  

(A) In comparison to WT littermates, images of Cx26K14-S17F/+ neonates show evidence of 

epidermal desquamation, or sunburn-like peeling, as soon as 48 hours post exposure to 14 

kJ/m2 of UV radiation. In contrast, (B) Cx43I130T/+ mice did not show any evidence of skin 

damage within the same time frame.  
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Figure 2.5: Cx26K14-S17F/+ exhibit UV-induced epidermal desquamation compared to Cx43I130T/+ mice and WT littermates. 
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experimental groups, which is normally lacking in melanoma tissue (Hsu et al., 2000) 

(Figure 2.6C). Collectively, the loss-of-function mutation in the gene encoding Cx43 (a 

putative tumor suppressor) and a carcinogenic insult (UV radiation) did not lead to any 

evidence of skin tumors. 

2.4.6 Primary murine melanocytes show no evidence of Cx43 
expression or homocellular coupling. 

To better elucidate the role of GJIC in the homeostatic regulation of the epidermal cells in 

the skin, we examined mouse melanocytes for connexin expression and/or intercellular 

coupling as this remains poorly understood. Primary melanocytes were successfully 

isolated as evidence by positive expression for the melanogenesis markers, L-DOPA and 

TRP1 (Figure 2.7A, B). The percent yield of L-DOPA positive melanocytes (dark pigment) 

was calculated across all passages (P2-P4), and the cultures were identified as essentially 

pure melanocyte monocultures (Figure 2.7A).  

In contrast to a previous report (Hsu et al., 2000), while Cx43 positive plaques were readily 

detectable at the cell surface of REKs (Figure 2.7C) and primary murine keratinocytes 

(Figure 2.7D), primary murine melanocytes showed no evidence of Cx43 expression. To 

assess for intercellular coupling that could be caused by the presence of other connexin 

family members, keratinocytes and primary (P2) melanocytes were incubated with calcein-

AM dye and dye recovery after photobleaching was measured. Primary melanocytes did 

not show any evidence of calcein-AM dye recovery compared to REKs, which are 

connexin rich (Figure 2.8A, B). Collectively, this indicates that mouse melanocytes are 

devoid of functionally relevant levels of connexins.   

2.4.7 Intracellular Cx43 expression is high in human melanoma 
metastases to distant organ sites compared to nodal 
metastases and primary melanomas. 

To better characterize the role of Cx43 in human melanoma, the tumor core of primary 

melanomas (N = 14), in addition to nodal (N = 15) and distant (N = 7) metastases were 

evaluated for Cx43 expression using immunohistochemistry. Cx43 expression was 

categorized as low or high, and protein localization as either intracellular or forming  
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Figure 2.6: Cx43I130T/+ mice did not develop tumors of melanocyte or keratinocyte 

origin 6 months post UV exposure.     

Dorsal skin sections from skin regions of low and high pigmentation were taken from 

Cx43I130T/+ mice and their WT counterparts 6 months post exposure to 14 kJ/m2 of UV 

radiation. (A) Low pigmented and high pigmented dorsal skin areas expressed K14 in the 

basal keratinocyte layer of the epidermis. (B) Low-pigmented and high pigmented dorsal 

skin sections from Cx43I130T/+mice and their WT littermates exhibited little to no 

expression of MITF, or (C) Ki67, but prominently expressed E-cadherin (Ecad). In 

comparison, (B, C) primary human melanomas expressed MITF and Ki67.  Dotted lines 

outline stratum corneum, solid line approximates epidermial-dermal interface. Scale bar = 

20 µm. 
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Figure 2.6: Cx43I130T/+ mice did not develop tumors of melanocyte or keratinocyte origin 6 months 

post UV exposure.     
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Figure 2.7: In contrast to keratinocytes, primary murine melanocytes show no 
evidence of Cx43 expression. 

(A) Primary murine melanocytes were positive for L-DOPA (black pigment) across all 

passages (P) 2 – 4.  L-DOPA positive cells were counted as a percentage of total cells to 

indicate mono culture purity and were essentially pure across all passages (P2-P4) (N = 3, 

n = 15). (B) Primary murine melanocytes also stained positive for TRP1. Interestingly, (C) 

P2 primary melanocytes show no evidence of Cx43 expression, in comparison to connexin 

rich REK controls. (D) Both undifferentiated and calcium-induced differentiated primary 

murine keratinocytes show evidence of Cx43 GJs at the junctional membrane identified by 

E-cadherin.  Arrows indicate the expression of Cx43 plaques at cell-cell interface. Scale 

bar = 20 µm. 
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Figure 2.7: In contrast to keratinocytes, primary murine melanocytes show no evidence of Cx43 

expression. 
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Figure 2.8: Primary murine melanocytes do not communicate through homocellular 
GJ channels. 

(A) Outlined melanocytes (red) loaded with gap junction permeable calcein dye were 

photobleached and dye recovery was subsequently measured every 3 seconds for 450 

seconds.  Photobleached melanocytes did not receive calcein dye (450 seconds) indicating 

lack of GJIC. In contrast, photobleached connexin-rich REKs (keratinocytes) were able to 

recover dye from neighbouring cells within 100 seconds of bleaching. (B) Quantified data 

illustrates fluorescent recovery in photobleached REKs (N = 3, n = 30) but not in 

photobleached primary melanocytes (N = 3, n = 30). Scale bar = 20 µm. 
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Figure 2.8: Primary murine melanocytes do not communicate through homocellular GJ channels. 
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punctate gap junction plaques. Primary melanomas showed no evidence of Cx43 

expression (90%), and in the rare cases where Cx43 was evident, it did not localize to gap 

junction plaques (Figure 2.9A). In addition, the majority of melanomas that metastasized 

to the lymph nodes did not express Cx43 (75%), and while more Cx43 was localized to 

intracellular regions in tumors defined as expressing high (9%) and low (14%) levels, little 

to no gap junction plaques could be identified (2%) (Figure 2.9B). Interestingly, the 

majority of samples collected from melanoma metastases to distant organs expressed Cx43 

within intracellular compartments at both high (37%) and low (34%) levels. However, 

consistent with other stages of the disease, very few gap junction plaques were identified 

(8%) (Figure 2.9C). Furthermore, the tumor core of melanomas that metastasized to distant 

organs (lung, femur, pelvic wall, kidney) stained positive for MITF confirming the tumor 

core, which was analyzed for Cx43 expression, was of melanocytic origin (Figure 2.9D). 

2.5 Discussion 
The role of gap junctions in human physiology has been of great interest particularly due 

to the sheer frequency of connexin mutations that have been linked to human diseases 

(Scott et al., 2012; Laird, 2008). Specifically, mutations in genes encoding Cx26 (GJB2) 

and Cx43 (GJA1) have been linked to the onset and progression of skin pathologies, 

including skin cancers (Naus and Laird, 2010; Ableser et al., 2014). Therefore, in the 

current study we used genetically modified mice that lacked a full complement of Cx26 or 

Cx43 function to address the potential roles of Cx26 and Cx43 in normal epidermis 

homeostasis and their putative protective roles in UV-induced skin damage. Furthermore, 

we assess Cx43 as a putative tumor suppressor in skin cancer onset and progression. 

Interestingly, Cx26K14-S17F/+ mice that mimic keratosis ichthyosis deafness (KID) syndrome 

had high mortality after UV-induced damage to the skin. Cx43I130T/+ mutant mice that 

mimic oculodentodigital dysplasia (ODDD) had normal skin that was resistant to UV-

induced damage and did not develop UV-induced skin tumors of keratinocyte or 

melanocyte origin. In addition, cultured primary mouse melanocytes, primary human 

melanomas and nodal metastases of melanomas did not show significant expression of 

Cx43. However, human distant melanoma metastases to different vital organs exhibited  
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Figure 2.9: Human melanoma metastases to distant organ sites express Cx43 

intracellularly compared to nodal metastases and primary cutaneous melanomas.  

(A) The majority of images analyzed from primary melanoma (N = 14), and (B) nodal 

metastases (N = 15) did not show evidence of Cx43 expression. In contrast, (C) the majority 

of images analyzed from melanoma metastases to distant organ sites (N = 7) showed 

evidence of Cx43 expression, however, this expression was predominately intracellular and 

did not form gap junction plaque-like structures indicative of potentially functional gap 

junction channels. Arrow indicate punctate Cx43 gap junction structure at the cell-cell 

interface. Scale bar = 20 µm. (D) Regardless of the distant organ site of melanoma 

metastases, tumor cores from lung, femur, pelvic wall, and kidney stained positive for 

MITF, indicating the tumor was from a melanocytic cell lineage.  
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Figure 2.9: Human melanoma metastases to distant organ sites express Cx43 intracellularly compared to nodal 

metastases and primary cutaneous melanomas. 
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high levels of intracellular Cx43. Taken together, the current study provides evidence for 

a critical role of Cx26 in protecting the epidermis from acute UV damage and suggests 

that, even though melanocytes are devoid of Cx43, high levels of Cx43 in metastatic 

melanomas at distant sites may provide the tumor with a survival advantage in vital organs. 

Over the past two decades, mutations in five connexin encoding genes have been linked to 

skin diseases (Scott et al., 2012). In particular, mutations in the GJB2 gene encoding Cx26 

are prevalent in the human population, and are routinely screened for in the clinic in cases 

where children present with hearing loss and/or skin disease (Chan and Chang, 2014). 

Among these, autosomal dominant mutations have been identified that are associated with 

both deafness and skin disorders (Scott et al., 2012). For example, the serine to 

phenylalanine substitution at position 17 (S17F) in Cx26 has been described to cause 

keratitis-ichthyosis deafness (KID) syndrome in humans (Richard et al., 2002). KID 

patients present with hearing deficits, as well as hyperkeratotic skin lesions and an 

increased propensity to develop skin cancer (Mazereeuw-Hautier et al., 2007). When 

expressed in connexin-deficient HeLa cells and Xenopus laevis oocytes, the Cx26 S17F 

mutant localizes at cell-cell contacts, but cells remained completely uncoupled indicating 

that the mutant has no capacity to make functional gap junction channels (Richard et al., 

2002; Lee et al., 2009). In addition, the Cx26 S17F mutant exhibited aberrant interactions, 

including a strong transdominant-negative effect on WT Cx43 when co-expressed in HeLa 

cells, in addition to increased hemichannel currents when co-expressed with WT Cx26 

(García et al., 2015). Considering that Cx26 and Cx43 are co-expressed in numerous 

keratinocytes in the epidermis, these effects begin to explain the severity of the disease 

observed in KID patients.  

These findings suggest that both Cx26 and Cx43 are critically important for the health of 

the epidermis and raises the possibility that genetically-modified mice that mimic 

connexin-linked diseases could be used to provide insights into the role of specific skin 

connexins.  Previously, a constitutive Cx26S17F/+ mutant mouse was created and analyzed 

as a model mimicking the Cx26 S17F mutation observed in human patients suffering from 

KID syndrome. However, Cx26S17F/+ mouse survival was poor as only a few mice lived 

into adulthood (Schütz et al., 2011). To mitigate low mouse viability and to eliminate 
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confounding effects from the multiple organs where Cx26 is expressed, we created a novel, 

tissue-specific mouse that expressed the S17F mutant in the epidermis as driven by the 

keratin 14 (K14) promoter. Our study revealed that the novel Cx26K14-S17F/+ mouse 

mimicked skin disease observed in KID patients and mutant mice typically survived into 

adulthood. In addition, autosomal dominant mutations in the GJA1 gene that encodes Cx43 

have been directly linked to development of oculodentodigital dysplasia (ODDD), which 

is typically characterized by craniofacial abnormalities, enamel loss, digit syndactyly, and 

in select cases, palmoplantar keratoderma and hyperkeratosis. Mutant mice (Cx43I130T/+) 

harboring the Cx43 I130T mutant protein have been previously characterized for 

abnormalities of the heart (Kalcheva et al., 2007), mammary gland (Stewart et al., 2013), 

and bladder (Huang et al., 2014) but no skin defects or abnormalities have been reported.  

In all instances, there was a significant reduction in overall Cx43 expression, including a 

significant dominant-negative effect on co-expressed WT Cx43, resulting in an 

approximate 50% reduction in overall GJIC (Kalcheva et al., 2007; Stewart et al., 2013). 

Thus, in addition to mimicking the human ODDD condition, Cx43I130T/+ mutant mice may 

shed insights into the role of Cx43 in the epidermis where it is abundantly expressed.  

As predicted, Cx26K14-S17F/+ neonates exhibited erythrokeratoderma and ichthyosis of the 

skin, further implicating the necessity of a fully functional complement of Cx26 in the 

epidermis. Interestingly, unchallenged Cx26K14-S17F/+ mice did not possess any deficits in 

overall survival, whereas UV-exposed Cx26K14-S17F/+ neonates frequently died soon after 

UV exposure. It has been well documented that exposure to UV radiation can alter 

epidermal permeability (Lee and Lee, 2014), possibly compromising mouse survival. 

Furthermore, the constitutive Cx26S17F/+ mutant mouse exhibited significant impairments 

in epidermal barrier, associated with the disarrangement of lipids that normally form a tight 

seal within the stratum corneum (Bosen et al., 2015; Schütz et al., 2011). However, 

Cx26K14-S17F/+ neonates did not exhibit any impairment in epidermal barrier when 

unchallenged or when challenged with 14 kJ/m2 of UV radiation. As such, we can 

extrapolate that the injury incurred by the keratinocyte-specific expression of the S17F 

mutant and/or by UV exposure does not dramatically affect the outer epidermal barrier, or 

that any alterations in the barrier were below our threshold of sensitivity. On first pass, one 

might predict that the keratinocyte-specific expression of the Cx26 S17F protein would 
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possess a similar barrier impairment to the Cx26S17F/+ mutant mouse. Particularly because 

the embryonic development of barrier function would occur after the K14-cre induction of 

the Cx26 S17F mutation in our mouse model (Byrne et al., 1994). It is likely that these 

mouse specific differences are related to the conditional versus global expression of the 

Cx26 S17F protein throughout development, such that the impairments seen in Cx26S17F/+ 

mice could be due to other impeding factors. However, the exact mechanism(s) resulting 

behind these differences in barrier function are still unclear. 

Exposure to UV radiation has also been shown to disrupt the basement membrane (BM), 

and increase the basal lamina thickness, in both aged humans (Lavker, 1979) and mice 

(Feldman et al., 1990), leading to a fragile interface that reduces epidermal capacity to 

respond to external forces (Amano, 2009). The BM exists at the epidermal-dermal junction 

and is dynamically regulated for the survival and maintenance of the epidermis, acting as 

both a stabilizing interface and a diffusion barrier (Breitkreutz et al., 2013; Amano, 2009). 

Furthermore, increases in basal lamina thickness, has been noted as a nonspecific response 

to trauma (Lavker, 1979). However, consistent with our findings that Cx26K14-S17F/+ and 

Cx43I130T/+ unchallenged and UV challenged neonates possessed uniform laminin 

localization and distribution, the severe UV-induced disruption and increased thickness of 

the basal lamina beneath epidermal keratinocytes was also not observed in young 

individuals, and was instead identified as a phenomena localized to aged skin (Amano, 

2009). Therefore, the additive insult of reduced Cx43 or Cx26 function alongside UV 

exposure does not impede the structural integrity of the epidermal-dermal basal lamina, 

thus indicating an intact inner permeability barrier in both mouse lines. 

Interestingly, despite an intact permeability barrier in both mouse lines, Cx26K14-S17F/+ 

neonates incurred a higher degree of UV-injury compared to WT controls, as evidenced by 

the rapid development of UV-induced epidermal desquamation. This indicates that Cx26 

is critical in modulating epidermal health in response to UV radiation, such that individuals 

that harbor aberrant Cx26 function may possess increased UV-reactivity of the skin. 

Unfortunately, due to the high level of mortality in exposed Cx26K14-S17F/+ mice, we were 

not able to analyze the incidence of UV-induced tumorigenesis. However, KID patients 

have been noted to possess increased propensity to develop squamous cell carcinomas 
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(SCCs) (Mazereeuw-Hautier et al., 2007), and our findings are the first to suggest that this 

could possibly be due to an increased sensitivity to the common environmental carcinogen, 

UV radiation.  

Surprisingly, little is known on how important Cx43 in the epidermis is to protecting 

humans from skin diseases and cancers of the skin that are prevalent in society and often 

linked to UV-damage. Here, we found that Cx43I130T/+ mice did not present with any 

adverse skin defects or abnormalities which suggests that the epidermis may produce a 

surplus of Cx43 or there is sufficient compensation from the 8 or more other connexins co-

expressed in the epidermis. Consistent with our findings, Cx43+/- heterozygotes, which 

have a 50% reduction in Cx43 function (Yamakage et al., 2000), and ODDD patients who 

harbor the I130T mutation (Paznekas et al., 2003), do not possess any known skin 

abnormalities or defects. However, Cx43 mutations that result in a much greater reduction 

in Cx43 function possess aberrant keratinocyte proliferation and differentiation (Churko et 

al., 2012), defective epidermal barrier (Maas et al., 2004), and palmoplantar keratoderma 

and hyperkeratosis (Gong et al., 2006; Van Steensel et al., 2005). Therefore, we also 

examined for any defects that would result from combining Cx43I130T/+ mice with exposure 

to UV radiation. Interestingly, we discovered that Cx43I130T/+ mice were not more 

susceptible to acute UV injury compared to their WT littermates. Thus, we can also infer 

that partial (50%) Cx43 function is sufficient to maintain the skin’s resiliency to 

environmental insults. Consistent with this notion, Cx43I130T/+ mice did not develop 

keratinocyte or melanocyte tumors 6 months after exposure to UV radiation. Taken 

together, our findings provide evidence that partial (50%) Cx43 function is sufficient to 

appropriately modulate epidermal homeostasis and maintain the skin’s resiliency against 

UV-induced pathogeneses in settings that can be extrapolated to the human ODDD 

population.  

Knowledge regarding the fundamental role of Cx43 in the epidermis has been hampered 

by a limited understanding in which cell types it is expressed. While it is abundantly 

expressed in the keratinocytes (Churko et al., 2012; Langlois et al., 2007), its expression 

and role in melanocytes is ill-defined. In keratinocytes, Cx43 has been shown to regulate 

proliferation (Pollok et al., 2011), differentiation (Churko et al., 2012), and migration 
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(Wright et al., 2009). However, its role in melanocyte regulation is still largely unknown, 

primarily due to the low yield of melanocytes in the epidermis (Lin and Fisher, 2007). 

Previous work has found that primary melanocytes are heterocellularly coupled with 

keratinocytes (Haass and Herlyn, 2005), and another study has suggested that this 

heterocellular coupling may be mediated by Cx43 (Hsu et al., 2000). Interestingly, the 

downregulation of Cx43 has been shown to facilitate normal melanocyte division (Haass 

and Herlyn, 2005), and if this occurs chronically, has been linked to the onset and 

progression of melanomas (Hsu et al., 2000; Haass et al., 2004). However, the proposed 

down regulation of Cx43 upon the onset of melanocyte transformation is dependent on the 

proposition that melanocytes actively produce meaningful levels of Cx43, which has never 

been firmly established.  Furthermore, it is interesting to note that both benign and 

cancerous human melanocytic nevi were also found to possess low levels of Cx43 (Sargen 

et al., 2013; Rezze et al., 2011). In our study, we found that primary murine melanocytes 

in monoculture did not express Cx43 and were also not GJIC coupled with neighboring 

cells. This questions the putative role of Cx43 as potential regulator of melanocyte 

proliferation and tumor suppressor at early stages of melanocyte dysregulation.  Our studies 

would argue that Cx43 plays little or no role in mouse melanocytes as primary cultures 

were completely devoid of Cx43 and were, in fact, not coupled by gap junctions in stark 

contrast to our findings in keratinocytes. This is in fact not surprising as melanocytes are 

typically dispersed in the epidermis with little opportunity for homocellular interactions.  

However, we cannot dismiss the possibility that the Gja1 gene encoding Cx43 is only 

activated upon signaling stimuli from surrounding keratinocytes that contact melanocytic 

processes in vivo.   Since our studies revealed that Cx43 was absent from mouse 

melanocytes, the question remained as to its role in human melanocyte tumorigenesis 

where primary tumors form within the confines of the epidermis only to later break through 

the basement membrane and invade the lymphatic system and, eventually, vital organs.   

Currently, evidence exists that supports a role for Cx43 as both a tumor suppressor and as 

a tumor facilitator which appears to be dependent on the type of tumor and the stage of the 

disease (Ableser et al., 2014; as reviewed by Naus and Laird, 2010). In human melanoma, 

studies regarding Cx43 expression are limited and controversial. Two studies report that 

Cx43 is expressed in primary human melanoma (Sargen et al., 2013; Rezze et al., 2011) 
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while another reports the lack of its expression (Haass et al., 2004). Furthermore, the role 

of Cx43 in human melanoma metastasis remains largely unexplored. Given the evidence 

that Cx43 may not be highly expressed in melanocytes, the question remained as to whether 

Cx43 would be upregulated at any stage of tumorigenesis and whether it would be properly 

assembled into gap junctions. Using a library of human melanomas, we found that Cx43 

was minimally expressed in primary cutaneous tumors and melanoma metastases to nodal 

tissue, but was surprisingly expressed at moderate to high levels in melanoma metastases 

to distant organ sites. However, Cx43 expression remained largely intracellular, suggesting 

that any causal role Cx43 played in tumor progression was GJ-independent.  Many GJ-

independent roles for Cx43 have been proposed but most involve Cx43 interactions to a 

human interactome, which exceeds over 30 proteins, many of which have been linked to 

cancer or cell proliferation pathways, including NOV/CCN3 and caveolin-1 (Naus and 

Laird, 2010; Zhou and Jiang, 2014). The lack of the ability of the tumor cells to form Cx43-

based GJ may be linked to a tumor survival mechanism, particularly to prevent the passage 

of molecules such as glutathione that assist in detoxifying carcinogens (Balendiran et al., 

2004). Furthermore, high intracellular expression of Cx43 in late stage disease could occur 

because of an identified GJ-independent role of Cx43 to resist cellular injury (Lin et al., 

2003).  Nevertheless, our findings provide no direct evidence that Cx43 is a tumor 

suppressor in melanomas but supports the position that Cx43 may provide the tumor cell a 

survival advantage when its metastasized to vital organs. Importantly, this unveils the 

potential of Cx43 as a therapeutic target in late stage disease.  

In conclusion, a full complement of functional Cx26 in mice plays a critical role in 

protecting the epidermis from a common environmental insult (UV) suggesting that Cx26 

is critical for skin homeostasis.   However, mice can tolerate a reduction in Cx43 function 

with little detrimental effects to the skin and no increase in susceptibility to skin tumors. 

Contrary to what we expected, mouse melanocytes were found to be devoid of Cx43 and 

not surprisingly, primary human melanomas also lacked Cx43.  But as disease progressed 

and melanomas metastasized to vital organs, Cx43 expression was abundant suggesting 

that Cx43 may provide the tumor with a survival advantage. Finally, the lack of Cx43 

forming gap junction plaques in late stage tumors would suggest that its role in cancer 

progression would be restricted to a GJ-independent mechanism likely linked to its 
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interactome. In the future, it would be of interest to determine if drugs targeting Cx43 in 

late stage melanoma disease would have therapeutic value.  

2.6 Additional Remarks 

2.6.1 Acknowledgements and Funding 

This work was supported by the Canadian Cancer Society (701459) to DWL and, in part, 

by the Canadian Institute of Health Research to DWL (123228).  KCA was supported by 

The Cancer Research and Technology Transfer (CaRTT) Strategic Training Program. The 

authors would also like to Dr. Glen Fishman (Albert Einstein College of Medicine) for 

providing the Cx43I130T/+ mice and Dr. Klaus Willecke (University of Göttingen School of 

Medicine) for supplying the Cx26floxS17F/+ mice. We would also like to thank Dr. Silvia 

Penuela for consulting on this project (University of Western Ontario).  Biological 

Materials were provided by the Ontario Tumor Bank, which is funded by the Ontario 

Institute for Cancer Research. 

Conflict of Interest: None declared 

  



www.manaraa.com

 72 

2.7 References 
Ableser, M. J., Penuela, S., Lee, J., Shao, Q., & Laird, D. W. (2014). Connexin43 reduces 

melanoma growth within a keratinocyte microenvironment and during tumorigenesis in 
vivo. Journal of Biological Chemistry, 289(3), 1592-1603. 

Amano, S. (2009, August). Possible involvement of basement membrane damage in skin 
photoaging. Journal of Investigative Dermatology Symposium Proceedings, 14 (1), 2-
7.  

Avshalumova, L., Fabrikant, J., & Koriakos, A. (2014). Overview of skin diseases linked 
to connexin gene mutations. International journal of dermatology, 53(2), 192-205. 

Balendiran, Ganesaratnam K., Dubar, Rajesh., Fraser, D. (2004). The role of glutathione 
in aging and cancer. Cell Biochemistry and Function, 27(5-6), 615-626. 

Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., & Wolf, R. (2012). 
Structure and function of the epidermis related to barrier properties. Clinics in 
dermatology, 30(3), 257-262. 

Bellei, B., Mastrofrancesco, A., Briganti, S., Aspite, N., Ale-Agha, N., Sies, H., & Picardo, 
M. (2008). Ultraviolet A induced modulation of gap junctional intercellular 
communication by P38 MAPK activation in human keratinocytes. Experimental 
dermatology, 17(2), 115-124. 

Bosen, F., Celli, A., Crumrine, D., vom Dorp, K., Ebel, P., Jastrow, H., ... & Willecke, K. 
(2015). Altered epidermal lipid processing and calcium distribution in the KID 
syndrome mouse model Cx26S17F. FEBS letters, 589(15), 1904-1910. 

Brandner, J. M., Houdek, P., Hüsing, B., Kaiser, C., & Moll, I. (2004). Connexins 26, 30, 
and 43: differences among spontaneous, chronic, and accelerated human wound 
healing. Journal of Investigative Dermatology,122(5), 1310-1320. 

Breitkreutz, D., Koxholt, I., Thiemann, K., & Nischt, R. (2013). Skin basement membrane: 
the foundation of epidermal integrity—BM functions and diverse roles of bridging 
molecules nidogen and perlecan. BioMed research international, 2013. 

Byrne, C., Tainsky, M., & Fuchs, E. (1994). Programming gene expression in developing 
epidermis. Development, 120(9), 2369-2383. 

Chan, D. K., & Chang, K. W. (2014). GJB2-associated hearing loss: Systematic review of 
worldwide prevalence, genotype, and auditory phenotype. The Laryngoscope, 124(2), 
E34-E53. 

Churko, J. M., Kelly, J. J., MacDonald, A., Lee, J., Sampson, J., Bai, D., & Laird, D. W. 
(2012). The G60S Cx43 mutant enhances keratinocyte proliferation and 
differentiation. Experimental dermatology, 21(8), 612-618. 



www.manaraa.com

 73 

Dassule, H. R., Lewis, P., Bei, M., Maas, R., & McMahon, A. P. (2000). Sonic hedgehog 
regulates growth and morphogenesis of the tooth. Development, 127(22), 4775-4785. 

Dbouk, H. A., Mroue, R. M., El-Sabban, M. E., & Talhouk, R. S. (2009). Connexins: a 
myriad of functions extending beyond assembly of gap junction channels. Cell 
Communication and signaling, 7(1), 1. 

De Gruijl, F. R. (1999). Skin cancer and solar UV radiation. European Journal of 
Cancer, 35(14), 2003-2009. 

Djalilian, A. R., McGaughey, D., Patel, S., Seo, E. Y., Yang, C., Cheng, J., ... & Segre, J. 
A. (2006). Connexin 26 regulates epidermal barrier and wound remodeling and 
promotes psoriasiform response. The Journal of clinical investigation, 116(5), 1243-
1253. 

Feldman, D., Bryce, G. F., & Shapiro, S. S. (1990). Mitochondrial inclusions in 
keratinocytes of hairless mouse skin exposed to UVB radiation. Journal of cutaneous 
pathology, 17(2), 96-100. 

Fitzpatrick, T. B. (1988). The validity and practicality of sun-reactive skin types I through 
VI. Archives of dermatology, 124(6), 869-871. 

Gambichler, T., Rotterdam, S., Tigges, C., Altmeyer, P., & Bechara, F. G. (2008). Impact 
of ultraviolet radiation on the expression of marker proteins of gap and adhesion 
junctions in human epidermis. Photodermatology, photoimmunology & 
photomedicine, 24(6), 318-321. 

Garcia, I. E., Bosen, F., Mujica, P., Pupo, A., Flores-Munoz, C., Jara, O., ... & Martinez, 
A. D. (2016). From Hyperactive Connexin26 Hemichannels to Impairments in 
Epidermal Calcium Gradient and Permeability Barrier in the Keratitis-Ichthyosis-
Deafness Syndrome. Journal of Investigative Dermatology, 136(3), 574-583. 

Giepmans, B. N. (2004). Gap junctions and connexin-interacting proteins. Cardiovascular 
Research, 62(2), 233-245. 

Goldberg, G. S., Bechberger, J. F., & Naus, C. C. (1995). A pre-loading method of 
evaluating gap junctional communication by fluorescent dye 
transfer. Biotechniques, 18(3), 490-497. 

Goliger, J. A., & Paul, D. L. (1995). Wounding alters epidermal connexin expression and 
gap junction-mediated intercellular communication. Molecular biology of the 
cell, 6(11), 1491-1501. 

Gong, X. Q., Shao, Q., Lounsbury, C. S., Bai, D., & Laird, D. W. (2006). Functional 
characterization of a GJA1 frameshift mutation causing oculodentodigital dysplasia and 
palmoplantar keratoderma. Journal of Biological Chemistry, 281(42), 31801-31811. 



www.manaraa.com

 74 

Haass, N. K., & Herlyn, M. (2005, November). Normal human melanocyte homeostasis as 
a paradigm for understanding melanoma. In Journal of Investigative Dermatology 
Symposium Proceedings (Vol. 10, No. 2, pp. 153-163). Elsevier. 

Haass, N. K., Ripperger, D., Wladykowski, E., Dawson, P., Gimotty, P. A., Blome, C., ... 
& Brandner, J. M. (2010). Melanoma progression exhibits a significant impact on 
connexin expression patterns in the epidermal tumor microenvironment. Histochemistry 
and cell biology, 133(1), 113-124. 

Haass, N. K., Smalley, K. S., & Herlyn, M. (2004). The role of altered cell–cell 
communication in melanoma progression. Journal of molecular histology,35(3), 309-
318. 

Haass, N. K., Wladykowski, E., Kief, S., Moll, I., & Brandner, J. M. (2006). Differential 
induction of connexins 26 and 30 in skin tumors and their adjacent epidermis. Journal 
of Histochemistry & Cytochemistry, 54(2), 171-182. 

Hardman, M. J., Sisi, P., Banbury, D. N., & Byrne, C. (1998). Patterned acquisition of skin 
barrier function during development. Development, 125(8), 1541-1552. 

Hsu, M., Andl, T., Li, G., Meinkoth, J. L., & Herlyn, M. (2000). Cadherin repertoire 
determines partner-specific gap junctional communication during melanoma 
progression. J cell Sci, 113(9), 1535-1542. 

Huang, T., Shao, Q., Barr, K., Simek, J., Fishman, G. I., & Laird, D. W. (2014). Myogenic 
bladder defects in mouse models of human oculodentodigital dysplasia. Biochemical 
Journal, 457(3), 441-449. 

IARC. (2012). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 
Journal of Chemical Information and Modeling, 53(9), 40–74. 

Kalcheva, N., Qu, J., Sandeep, N., Garcia, L., Zhang, J., Wang, Z., ... & Fishman, G. I. 
(2007). Gap junction remodeling and cardiac arrhythmogenesis in a murine model of 
oculodentodigital dysplasia. Proceedings of the National Academy of 
Sciences, 104(51), 20512-20516. 

Klein-Szanto, A. J., Silvers, W. K., & Mintz, B. (1994). Ultraviolet radiation-induced 
malignant skin melanoma in melanoma-susceptible transgenic mice. Cancer 
research, 54(17), 4569-4572. 

Koh, H. K., Geller, A. C., Miller, D. R., Grossbart, T. A., & Lew, R. A. (1996). Prevention 
and early detection strategies for melanoma and skin cancer: current status. Archives of 
Dermatology, 132(4), 436-443. 

Kretz, M., Euwens, C., Hombach, S., Eckardt, D., Teubner, B., Traub, O., ... & Ott, T. 
(2003). Altered connexin expression and wound healing in the epidermis of connexin-
deficient mice. Journal of cell science, 116(16), 3443-3452. 



www.manaraa.com

 75 

Kretz, M., Maass, K., & Willecke, K. (2004). Expression and function of connexins in the 
epidermis, analyzed with transgenic mouse mutants.European journal of cell 
biology, 83(11), 647-654. 

Kumar, R., Parsad, D., Kanwar, A., & Kaul, D. (2012). Development of melanocye-
keratinocyte co-culture model for controls and vitiligo to assess regulators of 
pigmentation and melanocytes. Indian Journal of Dermatology, Venereology, and 
Leprology, 78(5), 599-604. 

Laird, D. W. (2006). Life cycle of connexins in health and disease. Biochemical 
Journal, 394(3), 527-543. 

Laird, D. W. (2008). Closing the gap on autosomal dominant connexin-26 and connexin-
43 mutants linked to human disease. Journal of Biological Chemistry, 283(6), 2997-
3001. 

Laird, D. W. (2010). The gap junction proteome and its relationship to disease. Trends in 
cell biology, 20(2), 92-101. 

Langlois, S., Maher, A. C., Manias, J. L., Shao, Q., Kidder, G. M., & Laird, D. W. (2007). 
Connexin levels regulate keratinocyte differentiation in the epidermis. Journal of 
Biological Chemistry, 282(41), 30171-30180. 

Lavker, R. M. (1979). Structural alterations in exposed and unexposed aged skin. Journal 
of Investigative Dermatology, 73(1), 59-66. 

Lee, H. J., & Lee, S. H. (2014). Epidermal permeability barrier defects and barrier repair 
therapy in atopic dermatitis. Allergy, asthma & immunology research, 6(4), 276-287. 

Lee, J. R., DeRosa, A. M., & White, T. W. (2009). Connexin mutations causing skin 
disease and deafness increase hemichannel activity and cell death when expressed in 
Xenopus oocytes. Journal of Investigative Dermatology, 129(4), 870-878. 

Lin, J. H. C., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q., ... & Nedergaard, M. (2003). 
Connexin mediates gap junction-independent resistance to cellular injury. The Journal 
of neuroscience, 23(2), 430-441. 

Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. 
Nature, 445(7130), 843-850. 

Maass, K., Ghanem, A., Kim, J. S., Saathoff, M., Urschel, S., Kirfel, G., ... & Winterhager, 
E. (2004). Defective epidermal barrier in neonatal mice lacking the C-terminal region 
of connexin43. Molecular biology of the cell,15(10), 4597-4608. 

Masuda, M., Usami, S. I., Yamazaki, K., Takumi, Y., Shinkawa, H., Kurashima, K., ... & 
Kanzaki, J. (2001). Connexin 26 distribution in gap junctions between melanocytes in 
the human vestibular dark cell area. The Anatomical Record, 262(2), 137-146. 



www.manaraa.com

 76 

Mazereeuw-Hautier, J., Bitoun, E., Chevrant-Breton, J., Man, S. Y. K., Bodemer, C., Prins, 
C., ... & Kelsell, D. P. (2007). Keratitis–ichthyosis–deafness syndrome: disease 
expression and spectrum of connexin 26 (GJB2) mutations in 14 patients. British 
Journal of Dermatology, 156(5), 1015-1019. 

Naus, C. C., & Laird, D. W. (2010). Implications and challenges of connexin connections 
to cancer. Nature Reviews Cancer, 10(6), 435-441. 

Parkin, D. M., Mesher, D., & Sasieni, P. (2011). 13. Cancers attributable to solar 
(ultraviolet) radiation exposure in the UK in 2010. British journal of cancer, 105, S66-
S69. 

Paznekas, W. A., Boyadjiev, S. A., Shapiro, R. E., Daniels, O., Wollnik, B., Keegan, C. E., 
... & Jabs, E. W. (2003). Connexin 43 (GJA1) mutations cause the pleiotropic phenotype 
of oculodentodigital dysplasia. The American Journal of Human Genetics, 72(2), 408-
418. 

Pollok, S., Pfeiffer, A. C., Lobmann, R., Wright, C. S., Moll, I., Martin, P. E., & Brandner, 
J. M. (2011). Connexin 43 mimetic peptide Gap27 reveals potential differences in the 
role of Cx43 in wound repair between diabetic and non-diabetic cells. Journal of cellular 
and molecular medicine, 15(4), 861-873. 

Rezze, G. G., Fregnani, J. H. T. G., Duprat, J., & Landman, G. (2011). Cell adhesion and 
communication proteins are differentially expressed in melanoma progression 
model. Human pathology, 42(3), 409-418. 

Richard, G. (2000). Connexins: a connection with the skin. Experimental 
dermatology, 9(2), 77-96. 

Richard, G., Rouan, F., Willoughby, C. E., Brown, N., Chung, P., Ryynänen, M., ... & 
Russell, L. (2002). Missense mutations in GJB2 encoding connexin-26 cause the 
ectodermal dysplasia keratitis-ichthyosis-deafness syndrome.The American Journal of 
Human Genetics, 70(5), 1341-1348. 

Sargen, M. R., Gormley, R. H., Pasha, T. L., Yum, S., Acs, G., Xu, X., & Zhang, P. J. 
(2013). Melanocytic tumors express connexin 43 but not 26: immunohistochemical 
analysis with potential significance in melanocytic oncogenesis. The American Journal 
of Dermatopathology, 35(8), 813-817. 

Schütz, M., Auth, T., Gehrt, A., Bosen, F., Körber, I., Strenzke, N., ... & Willecke, K. 
(2011). The connexin26 S17F mouse mutant represents a model for the human 
hereditary keratitis–ichthyosis–deafness syndrome.Human molecular genetics, 20(1), 
28-39. 

Scott, C. A., & Kelsell, D. P. (2011). Key functions for gap junctions in skin and 
hearing. Biochemical Journal, 438(2), 245-254. 



www.manaraa.com

 77 

Scott, C. A., Tattersall, D., O'Toole, E. A., & Kelsell, D. P. (2012). Connexins in epidermal 
homeostasis and skin disease. Biochimica et Biophysica Acta (BBA)-
Biomembranes, 1818(8), 1952-1961. 

Seki, A., Coombs, W., Taffet, S. M., & Delmar, M. (2004). Loss of electrical 
communication, but not plaque formation, after mutations in the cytoplasmic loop of 
connexin43. Heart Rhythm, 1(2), 227-233. 

Söhl, G., & Willecke, K. (2003). An update on connexin genes and their nomenclature in 
mouse and man. Cell communication & adhesion, 10(4-6), 173-180. 

Stewart, M. K., Gong, X. Q., Barr, K. J., Bai, D., Fishman, G. I., & Laird, D. W. (2013). 
The severity of mammary gland developmental defects is linked to the overall functional 
status of Cx43 as revealed by genetically modified mice. Biochemical Journal, 449(2), 
401-413. 

Van Steensel, M. A. M., Spruijt, L., Van der Burgt, I., Bladergroen, R. S., Vermeer, M., 
Steijlen, P. M., & van Geel, M. (2005). A 2-bp deletion in the GJA1 gene is associated 
with oculo-dento-digital dysplasia with palmoplantar keratoderma. American Journal of 
Medical Genetics Part A, 132(2), 171-174. 

Vinken, M., Decrock, E., Leybaert, L., Bultynck, G., Himpens, B., Vanhaecke, T., & 
Rogiers, V. (2012). Non-channel functions of connexins in cell growth and cell 
death. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(8), 2002-2008. 

Wang, N., De Bock, M., Decrock, E., Bol, M., Gadicherla, A., Vinken, M., ... & Leybaert, 
L. (2013). Paracrine signaling through plasma membrane hemichannels. Biochimica et 
Biophysica Acta (BBA)-Biomembranes,1828(1), 35-50. 

Wright, C. S., Van Steensel, M. A., Hodgins, M. B., & Martin, P. E. (2009). Connexin 
mimetic peptides improve cell migration rates of human epidermal keratinocytes and 
dermal fibroblasts in vitro. Wound repair and regeneration,17(2), 240-249. 

Yamakage, K., Omori, Y., Zaidan-Dagli, M. L., Cros, M. P., & Yamasaki, H. (2000). 
Induction of skin papillomas, carcinomas, and sarcomas in mice in which the connexin 
43 gene is heterologously deleted. Journal of investigative dermatology, 114(2), 289-
294. 

Zhou, J. Z., & Jiang, J. X. (2014). Gap junction and hemichannel-independent actions of 
connexins on cell and tissue functions–An update. FEBS letters, 588(8), 1186-1192. 

 

 

 



www.manaraa.com

 78 

Chapter 3  

3 General Overview 
Connexins have been extensively implicated in maintaining epidermal health (Scott et al., 

2012; Laird, 2010), but their role during epidermal homeostasis in response to the common 

environmental insult, UV radiation, remains poorly understood. Connexins, specifically 

Cx43, have also been proposed to act as tumor suppressors against the development of skin 

cancers (Naus and Laird, 2010; Ableser et al., 2014), of which overexposure to UV 

radiation is the primary cause (Parkin et al.,  2011; Koh et al., 1996). However, their status 

during human melanoma progression, from melanocyte to melanoma metastases, remains 

controversial and poorly understood. To add to this uncertainty, the connexin status of 

human melanoma tissues throughout the late stages of disease progression (metastasis) is 

relatively nonexistent. In our study, we assessed the possible protective roles of Cx43 and 

Cx26 in modulating epidermal health in response to UV radiation using two disease-linked 

connexin mutant mice. We found that a partial reduction in Cx26, but not Cx43, was critical 

in maintaining epidermal health both when unchallenged and when challenged with UV 

radiation. Furthermore, we found that similar to primary melanocytes, primary cutaneous 

melanoma and nodal metastases did not show prominent Cx43 expression, whereas, human 

melanoma metastases to distant organ sites expressed Cx43 intracellularly.  

3.1 Limitations, Future Studies, and Conclusions  
The use of disease-linked genetically engineered mouse models are excellent tools to 

investigate the role of connexins in UV-induced pathogeneses in vivo. As such, in this 

investigation two disease-linked connexin mutant mice (Cx26K14-S17F/+ and Cx43I130T/+) that 

possessed a significant reduction in connexin function were analyzed to discern the roles 

of Cx26 and Cx43 in epidermal health. However, for the study of UV-induced injury, the 

genetic background and the degree of pigmentation within the skin is an important 

consideration (Mäkinen and Stenbäck, 1998). For example, past work has noted that UV-

reactivity and UV-induced skin tumor incidence was higher in mice with genetic 

backgrounds that possessed little to no skin pigment (SKH-1) compared to those that were 

highly pigmented (C57BL/6) (Mäkinen and Stenbäck, 1998). Furthermore, individuals 
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with darker skin have also been shown to possess increased resistance to skin tumor 

development and photoaging (IARC, 1992). However, while both of our mutant mouse 

lines (Cx43I130T/+ and Cx26K14-S17F/+) were bred on highly pigmented genetic backgrounds, 

which is commonly referred to as tumor-insensitive, they still provided excellent context 

to the roles of Cx26 and Cx43 in modulating epidermal homeostasis. In addition, it also 

should be noted pigment-causing melanocytes are localized primarily in the interfollicular 

epidermis in humans, and primarily in the follicular skin of mice after 4 days of age (Chou 

et al., 2013). This may limit our extrapolation of melanocyte behaviour to human diseases 

such as melanoma. Therefore, in this study we have combined our analysis to include both 

mutant mice and human melanoma samples, and have ensured that exposure to UV in mice 

occurs at 3 days of age.  

On first pass, one might suggest that it would be useful to analyze these mouse models on 

a genetic background with a lower level of skin pigmentation, such as SKH-1 or DBA/2, 

that is presumably more susceptible to UV radiation (Mäkinen and Stenbäck, 1998). 

However, it is interesting to note that additional work has reported that the degree of 

erythema and skin tumor incidence is also heavily related to factors other than pigment, 

including immunological and genetic differences (Mäkinen and Stenbäck, 1998; IARC, 

1992; Noonan and Hoffman, 1994; Klein-szanto et al., 1994). In addition, the use of a UV-

insensitive genetic background further implicates the mutations in these mice as being 

primarily responsible for any observed UV-induced changes. For example, despite the high 

pigmented genetic background of Cx26K14-S17F/+ mice (Cx26floxS17F/+: 129Sv; K14-cre: 

C57BL/6), they still presented with a dramatic degree of UV-reactivity, and an intolerance 

to UV-insult, further implicating the severity of a partial reduction in Cx26 function in the 

skin. Furthermore, in cases such as this one, where a genetic mutation results in a high 

degree of UV-susceptibility, a less pigmented genetic background may actually 

compromise the survival of an otherwise viable mouse model. However, one of the major 

questions left unanswered in our investigation is whether or not the lack of UV-

susceptibility and UV-induced tumor incidence in Cx43I130T/+ (C57 BL/6) mice was fully 

representative of a partial reduction in Cx43 function, or if the innate insensitivity of the 

pigmented genetic background possibly masked subtler changes in epidermal health. As 

such, future studies should examine if partial Cx43 function (50%) affects epidermal 
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homeostasis in a model that has been sufficiently backcrossed onto a genetic background 

with a lower level of skin pigmentation.  

Mutant mice bred on a C57BL/6 background have been used in prior analyses of UV-

induced melanoma incidence when paired with a genetic alteration that significantly 

impairs the function of a tumor suppressor (i.e. Cdkn2a) (Gaffal et al., 2011), or induces 

the expression of an oncogenic sequence (i.e. SV40) (Klein-szanto et al., 1994). These 

genetic changes significantly increased the susceptibility of C57BL/6 mice such that they 

often spontaneously developed skin tumors  (Gaffal et al., 2011; Klein-szanto et al., 1994). 

However, the Cx43I130T/+ (C57BL/6) mutant mouse has never been reported to 

spontaneously develop tumors of any kind (Kalcheva et al., 2007; Stewart et al., 2013). 

Accordingly, Cx43I130T/+ mice did not show evidence of skin tumor development after 

exposure to UV radiation, and did not possess any dramatic epidermal abnormalities when 

unchallenged. Therefore, a partial (50%) reduction in Cx43 function was not sufficient to 

significantly affect its proposed role as a tumor suppressor, or as a regulator of epidermal 

homeostasis. Interestingly, the development of palmoplantar keratoderma and 

hyperkeratosis in human ODDD patients (Paznekas et al., 2003; Avshalumova et al., 2014), 

in addition to aberrant murine keratinocyte differentiation and barrier formation (Maass et 

al., 2005; Churko et al., 2012) all occurred when mutations in Cx43 reduced its function 

by more than 50%. Among these, the Cx43G60S/+ (Gja1Jrt/+) mouse line has been shown to 

possess a greater than 50% reduction in Cx43 (Stewart et al., 2013), which resulted in 

keratinocyte hyperproliferation (Churko et al., 2012). Moving forward, to further elucidate 

the proposed role of Cx43 in maintaining epidermal health of the skin, specifically in 

response to UV insults, we could examine Cx43G60S/+ mice for UV-induced epidermal 

changes. In addition, the Cx43G60S/+ mice are bred on to a mixed background of C3H/HeJ 

and C57BL/6 that is lighter in pigment (Stewart et al., 2013). Thus, such a study would 

also help elucidate the potential role of Cx43 as a tumor suppressor in response to a 

carcinogenic UV insult, in a model that is presumably more susceptible to UV radiation.  

In addition, the implications of Cx26-induced impairments in epidermal health need to be 

further explored physiologically. In our studies, Cx26K14-S17F/+ neonates did not show 

evidence of gross impairments in epidermal permeability when unchallenged or when 
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challenged with UV radiation. However, the assays we used to assess epidermal 

permeability and integrity (toluidine blue dye penetration and laminin expression) only 

detect drastic alterations in epidermal health, and future studies are required to isolate the 

possible occurrence of significant, but subtler changes, in epidermal physiology. The main 

function of the epidermis is to confer a barrier against the diffusion of molecules from the 

external environment, in addition to the excessive diffusion of molecules out of the skin 

(Hardman et al., 1998). However, the epidermal barrier is not absolute, and also facilitates 

the normal movement of water, termed transepidermal water loss (TEWL) (Baroni et al., 

2012; Lee and Lee, 2014). Interestingly, measuring the amount of TEWL has been 

identified as a useful tool to detect skin damage, as the rate of TEWL generally increases 

in proportion to the level of damage (Baroni et al., 2012). As such, future studies could 

examine if the dramatic skin phenotype seen in both unchallenged and UV challenged 

Cx26K14-S17F/+ mice can be explained by excessive water loss through the skin. Commonly, 

TEWL is analyzed using a probe that measures water vapor pressure on the surface of the 

skin (Hardman et al., 1998), and can be used to measure TEWL within 6 – 24 hours after 

UV- exposure (Bergeron et al., 2012). Thus, future studies can measure TEWL in Cx26K14-

S17F/+ neonates and their observed decrease in survival after UV exposure should not 

interfere.  

In addition, the epidermal layers beneath the stratum corneum confer a second line 

epidermal barrier (Baroni et al., 2012). Within these layers, tight junctions play an 

important role in controlling the paracellular movement of molecules between 

keratinocytes (Sugawara et al., 2013). UV radiation has also been shown to disrupt tight 

junction organization in keratinocytes (Yuki et al., 2011), and tight junction disruption or 

dysfunction has also been shown to result in impaired barrier function (Yuki et al., 2011; 

Sugawara et al., 2013). As such, future studies should also assess for transient impairments 

in tight junctions in vivo and in primary keratinocytes from both Cx26K14-S17F/+ neonates 

and their WT littermates. Collectively, this data will help further unravel the physiological 

role of Cx26 in maintaining epidermal health, and how this could be perturbed during UV 

exposure.  
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While the use of genetically modified mice presents distinct advantages to study the roles 

of connexins in vivo, the maternal behavior to commit pup infanticide can make 

determining the direct cause of death in neonates challenging. Primarily because as shown 

recently, post-natal pups can also die from a variety of causes other than maternal 

cannibalism initially and the mother simply eats the lost pups post-mortem (Weber et al., 

2013). This makes it difficult to discern the initial cause of infant mouse death. 

Accordingly, one of the major questions left unanswered from our study is whether or not 

Cx26K14-S17F/+ neonates die immediately after UV exposure and then the mother cleans up 

her dead offspring, or whether Cx26K14-S17F/+ neonates are significantly weaker due to 

incurred UV insult and the mother then targets and eats weaker offspring. However, even 

without this knowledge the end inference is the same, Cx26K14-S17F/+ neonates incur a 

significant degree of UV-injury, which ultimately compromises their fitness. In support of 

this notion, Cx26K14-S17F/+ neonates developed epidermal desquamation, or sunburn-

induced peeling, within 48 hours of UV exposure whereas Cx43I130T/+ mice and the WT 

littermates from both mouse lines did not. Moving forward, it is important that we resolve 

the molecular mechanism(s) surrounding this occurrence to increase our understanding of 

Cx26 in modulating epidermal health. To do so, primary keratinocyte cultures isolated 

from Cx26K14-S17F/+ neonates and their WT littermates are an excellent avenue, and 

circumvent any impairments in viability incurred by UV exposure. Past reports have used 

this model to examine molecular changes in keratinocytes in response to UV-insult (Sitailo 

et al., 2002; Rivas and Ullrich, 1992), and have identified an ideal dosage around 0.25 – 1 

kJ/m2 of narrowband UV radiation (Cho et al., 2008). After UV exposure, primary 

keratinocytes from Cx26K14-S17F/+ neonates and their WT littermates can also be easily 

assessed for propensity to undergo UV-induced tumorigenesis, including epithelial to 

mesenchymal transition. This is of particular interest because our findings are the first to 

suggest that increased UV-reactivity, incurred by a reduction in Cx26 function, could be 

the reason why the skin of KID patients has been identified as significantly susceptible to 

the development of keratinocyte-derived tumors (Mazereeuw-Hautier et al., 2007).  

In our studies we also show that unlike keratinocytes, primary murine melanocytes in 

monoculture do not express Cx43 and are not coupled. It is important to note that epidermal 

melanocytes are extremely difficult to analyze in vivo, primarily because they only make 
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up 5-10% of total cells in the epidermis in humans (Li and Herlyn, 2000). In particular, 

epidermal melanocytes of mouse skin are hard to analyze because not only do they only 

make up a small proportion of epidermal cells (Hirobe, 1995), but at 4 days of age the level 

of epidermal melanocytes dramatically decreases and are localized primarily to the hair 

follicles (Hirobe, 1995; Chou et al., 2103). As such using primary isolates of melanocytes 

in culture allow us to better analyze these cells under conditions that produce a higher cell 

yield. However, in vivo epidermal melanocytes (in humans and mice before 4 days of age) 

normally exist as a part of an epidermal melanin unit, where they are completely 

surrounded by keratinocytes, and rarely come into contact with one another (Haass and 

Herlyn, 2005). In fact, aggregates of melanocytes are considered precursors for melanoma 

progression, commonly existing as melanocytic nevi (Bandarchi et al., 2010). Past work 

has reported that melanocytes in monoculture possess some similarities to melanoma cells, 

expressing similar antigens such as melanoma adhesion molecule (Shih et al., 1994). 

Therefore, it is possible that the connexin profile of our primary melanocytes represent the 

very early stages prior to melanoma progression. Interestingly, when melanocytes were co-

cultured with keratinocytes the expression of melanoma adhesion molecule was lost (Shih 

et al., 1994), thus identifying the keratinocyte-melanocyte co-culture as a useful model to 

mimic melanocytes in vivo. Therefore, as we continue to model the role of Cx43 in 

modulating epidermal melanocytes, it is important that we also examine for its expression 

when melanocytes are surrounded by keratinocytes in co-culture. One study has proposed 

that within these conditions melanocytes express Cx43 (Hsu et al., 2000), however there is 

no evidence that Cx43 forms GJ plaques at the melanocyte-keratinocyte interface, which 

would implicate Cx43 in heterocellular communication. Thus, to elucidate the role of Cx43 

and GJIC in melanoma onset, future studies should examine the connexin profile of 

melanocytes in a keratinocyte microenvironment.  

Our study also provides evidence that suggests Cx43 may act as a tumor facilitator in late 

stage human melanoma. Past work has elucidated that distant organ metastasis occurs in a 

non-random fashion, most likely due to the specific organ microenvironment (Fidler, 2003; 

Hart and Fidler, 1980). Unfortunately, due to the limited selection of distant melanoma 

tumors, we were not able to distinguish if there were any organ specific differences in Cx43 

expression, that could possibly impact metastatic behaviour. As such, moving forward it is 
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important that we broaden our analysis of Cx43 in distant melanoma metastases to include 

an increased sample set from a variety of organ sites. Within this analysis, it is also 

important that we continue to discern Cx43 localization in addition to its expression using 

immunohistochemistry. While other tools, such as tumor microarrays, provide a higher 

throughput analysis of human tissue, they only analyze a small fraction of the tumor and 

are not representative of the entire heterogeneous lesion (Sargen et al., 2013). Furthermore, 

they do not provide information on protein localization, which is imperative as we continue 

to elucidate the mechanism behind the possible role of Cx43 as a late stage tumor 

facilitator. As such, moving forward, it is important that we continue to analyze for Cx43 

expression and localization in larger sample sets of human melanoma using 

immunohistochemistry of whole tumor sections. Collectively, these studies will provide us 

with a fuller picture of the role of Cx43 as a potential tumor facilitator in late stage 

melanoma disease.  

In addition, Cx43 localization in human melanoma metastases found in distant organ sites 

was primarily intracellular, indicating that if it is functioning as a tumor facilitator it is 

most likely due to GJ-independent mechanisms. Many GJ-independent roles for Cx43 in 

cancer have been identified, the majority surrounding around the interaction of Cx43 to 

proteins that are linked to cancer or cell proliferation pathways (Zhou and Jiang, 2014). 

Therefore, to increase our knowledge surrounding the role of Cx43 in distant organ 

metastases, future studies should also focus on elucidating the mechanism by which Cx43 

possibly facilitates melanoma metastasis. In this regard the chick-chorioallantoic 

membrane (CAM) assay, which has been used as a highly vascularized in vivo system, is 

an excellent tool that can rapidly and inexpensively recapitulate melanoma metastasis 

(Stoletov et al., 2013; Penuela et al., 2012; Chambers et al., 1982; Chambers et al., 1992; 

Ableser et al., 2014). To determine whether or not Cx43 expressing human tumors direct 

metastasis or facilitate tumor cell survival in distant organs, future studies should isolate 

primary human melanoma cells from frozen specimens and implant them between 

branching vessels on the CAM as previously described (Welte et al., 2013; Penuela et al., 

2012). Furthermore, Cx43 mimetic peptides, such as Gap27, that block Cx43 mediated 

intercellular communication can be applied to isolated human melanoma cells prior to their 

injection to determine if Cx43 can still facilitate end stage metastases, which would further 
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implicate a GJ- independent mechanism (Pollok et al., 2011). Collectively these studies 

will increase our knowledge of Cx43 in late stages of melanoma progression that will allow 

us to determine if we can add to the growing list of diseases where connexin inhibitors will 

provide a therapeutic advantage.  

3.2 Overall Contributions 
This investigation is one of the first to address important questions regarding the roles of 

Cx43 and Cx26 in modulating epidermal homeostasis in response to UV radiation. In 

addressing this question, we have successfully created a novel and viable mouse model 

(Cx26K14-S17F/+) that can be used to continue to analyze the role of Cx26 in keratinocytes, 

that can be extrapolated to the human KID population. In our study the reduction of Cx26 

function in keratinocytes lead to erythrokeratoderma and ichthyosis of the skin, and an 

increased susceptibility to UV radiation. Our work is the first to suggest a link between a 

reduction in epidermal Cx26 and increased UV-reactivity of the skin, which could possibly 

explain why KID patients, who harbor Cx26 mutations, have an increased propensity to 

develop keratinocyte-derived tumors. Furthermore, these studies will bring us closer to 

making recommendations to patients who suffer from Cx26-associated syndromic skin 

disease regarding safe UV-exposure practices. In addition, Cx43I130T/+ mice were not more 

susceptible to UV-induced pathogenesis, indicating that a partial (50%) Cx43 function was 

sufficient to maintain epidermal health. Therefore, the epidermis expresses a surplus of 

Cx43 then what is actually required to maintain cellular behavior and tissue function.  This 

is encouraging as it suggests that human patients who possess a similar reduction in Cx43 

expression, as seen in certain subsets of ODDD patients, are not more susceptible to UV-

induced injuries, including cancers.  

Furthermore, this investigation is the first to identify that Cx43 may act as a tumor 

facilitator to promote tumor cell survival in human melanoma metastases in a variety of 

distant organ sites. The analysis of Cx43 expression in human melanoma progression 

represents the next vital step in translating our knowledge of these channel-forming 

proteins to the clinic, an important avenue to pursue in the investigation of cancer 

treatment. In particular, it is imperative that we continue to investigate the most fearsome 

aspect of human melanoma: its metastases to distant organ sites (Fidler, 2003). Despite 
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significant advancements in technology, surgical techniques, and adjuvant therapies, the 

majority of cancer deaths, including melanoma, are associated with metastatic tumor 

burden (Fidler, 2003). As such it is important that we continue to characterize the molecular 

profile of human melanoma to increase our understanding of mechanisms behind 

metastatic pathogenesis. In this regard, our work is also the first to suggest that Cx43 may 

be acting through GJ-independent mechanism in end stage human melanoma progression. 

Therefore, as we continue in pursuit of personalized therapeutics, we have unveiled the 

potential of Cx43 as a target in metastatic human melanoma, and have provided a direction 

for which future studies can begin to delineate the Cx43 related mechanism that facilitates 

metastatic tumor burden.  
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Appendices 

Appendix A: Human melanoma sample set ordered from the Ontario Institute of 

Cancer Research 
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Appendix B: UV spectral chart of 302nm UV lamp with filter used in all UV 

exposure experiments.   

 

 

  

 
  

Modified from: http://www.uvp.com/spectralcharts.html 
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Appendix C: Cx43I130T/+  mice are free of any growths or abnormalities 6 months 

after UV exposure. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

Dorsal Analysis Post 6.2 kJ/m2 of UV Dorsal Analysis Post 14 kJ/m2 of UV 
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Appendix D: Animal Use Protocol approval for all animal work within this 

investigation. 
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Appendix E: Human Science Research Ethics Board approval for all work using 

human melanoma samples. 
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